reinforcement learning

Towards Robust and Adaptive Decision-Making in Autonomous Robots - A Framework for Synchronized Digital Twins

Introduction As part of a cooperation project with the Deutsches Elektronen-Synchrotron (DESY), a safe, learning-enabled control framework is to be developed for an autonomous mobile robot that is to be used for radiation measurement and maintenance tasks in particle accelerator tunnels. It should be able to recognize obstacles independently, avoid collisions with them and carry out tasks independently. Conventional robotics approaches work with predefined trajectories, which restrict them to an isolated work area and a controlled environment free of obstacles [1].

Evaluating Saliency Map Methods in Reinforcement Learning

Various methods to construct saliency maps are evaluated quantitatively with regards to their correctness. This is done in a reinforcement learning setting with DQN and Atari Breakout. The considered saliency map methods include multiple …

Reward-Shaping und Curriculum-Learning in einem Sparse-Reward-Adversarial-Environment in Unity3D

Ziel dieser Arbeit ist die Lösung eines Sparse-Reward-Problems, mithilfe von Reward-Shaping und Curriculum-Learning, in einem Adversarial Game-Environment. Dazu wurde in Unity 3D ein 1 vs. 1 Shooter-Environment im Stil von Laser-Tag aufgebaut, in dem …

Sim-To-Sim Gap des Cartpole Environments

Das Training eines auf Reinforcement Learning basierenden Agenten gestaltet sich auf physischer Hardware ressourcen-, personal- und zeitaufwändig, weshalb häufig auf das Trainieren innerhalb von Simulationen zurückgegriffen wird. Diese ko ̈nnen die …

A competitive 3D-Volleyball-Game using Reinforcement Learning with Unity ML-Agents

This project report describes the integration of reinforcement learning into a game development scenario by creating a competitive volleyball game using the Unity ML-Agents Toolkit. The work elaborates on what reinforcement learning is, brings forth …

DDQN: Metrics for measuring stability using the example of replay buffer size and minibatch size

The Reinforcement Learning algorithm Double Deep Q-Network (DDQN) is known to have an unstable training process (Halat and Ebadzadeh, 2021). In order to overcome instability, this paper aims to deepen the understanding of stability and measuring it. …

Ein Vergleich von feature-basiertem und bildbasiertem Reinforcement Learning anhand des Spiels Snake

Eine der beliebtesten Herausforderungen der letzten Jahre auf dem Gebiet der künstlichen Intelligenz ist die Entwicklung von Agenten, die in der Lage sind, das Spielen von klassischen Videospielen zu perfektionieren. Diese Arbeit diskutiert den …

Evaluation der Performanz von Algorithmen im Reinforcement Learning

Verglichen werden die drei Reinforment Lernening Verfahren Cross-Entropy-Method, REINFORCE und Advantage Actor Critic. Für die beiden Environments CartPole und Breakout sollen Policys erlernt werden und an Hand der Returns dieser Policys werden die …

Explanation and comparison of deep learning models and improvement approaches used in Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. The purpose of reinforcement learning is for the agent to …

Kooperatives Multiagent Reinforcement Learning mit zentralisiertem Deep Q-Learning

Im Multiagent Reinforcement Learning (MARL) wird eine effektive Integration von Methoden des Reinforcement Learning (RL) und Multiagentensystemen (MAS) angestrebt. Mithilfe einer Menge adaptiver und lernender Agenten in einem verteilten intelligenten …