reinforcement learning

A competitive 3D-Volleyball-Game using Reinforcement Learning with Unity ML-Agents

This project report describes the integration of reinforcement learning into a game development scenario by creating a competitive volleyball game using the Unity ML-Agents Toolkit. The work elaborates on what reinforcement learning is, brings forth …

DDQN: Metrics for measuring stability using the example of replay buffer size and minibatch size

The Reinforcement Learning algorithm Double Deep Q-Network (DDQN) is known to have an unstable training process (Halat and Ebadzadeh, 2021). In order to overcome instability, this paper aims to deepen the understanding of stability and measuring it. …

Ein Vergleich von feature-basiertem und bildbasiertem Reinforcement Learning anhand des Spiels Snake

Eine der beliebtesten Herausforderungen der letzten Jahre auf dem Gebiet der künstlichen Intelligenz ist die Entwicklung von Agenten, die in der Lage sind, das Spielen von klassischen Videospielen zu perfektionieren. Diese Arbeit diskutiert den …

Evaluation der Performanz von Algorithmen im Reinforcement Learning

Verglichen werden die drei Reinforment Lernening Verfahren Cross-Entropy-Method, REINFORCE und Advantage Actor Critic. Für die beiden Environments CartPole und Breakout sollen Policys erlernt werden und an Hand der Returns dieser Policys werden die …

Explanation and comparison of deep learning models and improvement approaches used in Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. The purpose of reinforcement learning is for the agent to …

Kooperatives Multiagent Reinforcement Learning mit zentralisiertem Deep Q-Learning

Im Multiagent Reinforcement Learning (MARL) wird eine effektive Integration von Methoden des Reinforcement Learning (RL) und Multiagentensystemen (MAS) angestrebt. Mithilfe einer Menge adaptiver und lernender Agenten in einem verteilten intelligenten …

Optimierter DDPG für die HalfCheetah-Umgebung mittels Hyperparameter-Tuning

Deep Deterministic Policy Gradient (DDPG) ist eine Methodik zur Kontrolle kontinuierlicher Simulationsumgebungen des Reinforcement Learnings. Im Folgenden wird evaluiert inwiefern DDPG für die physikalische HalfCheetah-Umgebung mittels …

Reward Engineering an einer End-to-End Spurhaltung durch Reinforcement Learning

End-to-End gesteuerte autonome Fahrzeuge durch Reinforcement Learning bieten im Vergleich zu End-to-End Ans ̈atzen durch su- pervised learning einen Vorteil. Beim Reinforcement Learning macht das Fahrzeug eigene Erfahrungen und wertet diese anhand …

Simulating the Effect of Universal Basic Income on Social Welfare in a Gather-and-Build-Game

The effects of basic income, a certain number of coins paid to every individual without conditions, have received growing interest in research in recent years. Real-world studies are difficult to perfom due to their high costs. Simulating them in a …

Vergleich verschiedener Verfahren zur Lösung des MountainCar-v0 Problems

In dieser Arbeit werden die Verfahren State Diskretisierung, Tile Coding und Deep Q-Learning im Bezug auf die Lösung des MountainCar-v0 Problem betrachtet. Dazu wird als Grundlage der Q-Learning Algorithmus genutzt und um diese Verfahren ergänzt. …