Detection and classification of the 15 Puzzle
with a Convolutional Neural Network

Niklas Hoefflin

Faculty of Engineering and Computer Science
Department Computer Science
Hamburg University of Applied Sciences
20099 Hamburg, Germany
niklas.hoefflin@haw-hamburg.de

February 25, 2023

Abstract. The 15 Puzzle is a popular sliding puzzle that provides both
entertainment and a challenge to the brain. Solving it in as few moves
as possible can be quite challenging. To receive assistance in solving the
puzzle or to solve it completely, an Android app has been developed that
calculates and displays the shortest path. This paper describes solving
the 15 Puzzle on an embedded Android system using image processing
and classification by a Convolutional Neural Network (CNN) trained on
the Modified National Institute of Standards and Technology (MNIST)
dataset. It describes the process of detecting a puzzle in an image, pro-
cessing it, extracting the digits, and subsequent classification with the
CNN, and mentions a method for solving the puzzles with an informed
search algorithm. In addition, it elaborates on the challenges that arose
and how they were solved. To test the reliability of the application and
the accuracy of the CNN within the app, 100 self-made puzzles were
evaluated. In the experiments, a total of 2000 digits were classified and
compared to their true labels. Based on this, the accuracy of the CNN
within the app and the reliability of the app were calculated, indicat-
ing how many puzzles were correctly classified. The CNN achieved an
accuracy of 91.88%, and the reliability of the app was 43%.

Keywords: 15 Puzzle, Image Processing, Convolutional Neural Net-
work, Informed Search Algorithms, Android, Embedded Systems

1 Introduction

The 15 Puzzle is a sliding puzzle invented by Noyes Palmer Chap-
man|1]. Tt consists of a 4 x 4 grid that contains 15 tiles and one
empty field (Figure . The tiles are numbered from 1-15, and the
goal of the game is to slide the tiles into the empty field to match the
arrangement (Figure . Although efficient algorithms and heuris-
tics for solving the 15 Puzzle already exist, most of these algorithms
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are only used in research. The idea for this work was to apply these
algorithms in practice, combining them with the areas of image pro-
cessing and machine learning.

2 7 4 1 2 3 4
1 3 6 8 5 6 7 8
5 9 15 10 9 10 11 12
13 14 11 12 13 14 15

(a) Possible unsolved 15 Puzzle (b) Solved 15 Puzzle

Fig. 1: The layout of the 15 Puzzle used in this paper.

For this reason, an Android app was developed for the 15 Puz-
zle, which displays the user the next move or the shortest solution
to solve the puzzle. Due to a large number of different physical 15
Puzzles and difficulties in recognizing the grid, this work abstracted
the 15 Puzzle and represented it in the form of a 15 Puzzle printed
on paper.

This paper describes solving the 15 Puzzle on an Android system
using image processing and classification. The open-source library
OpenCV was used to detect a puzzle in an image, process it, and
extract its digits. The digits were classified using a Convolutional
Neural Network (CNN) built with Keras, an API for TensorFlow
2.0, and trained on the MNIST|2| dataset.

The motivation and inspiration for this work were the general in-
terest in automation, image recognition, and machine learning, the
development and introduction of informed search algorithms in the
Intelligent Systems module, and these papers[3][|4][5]. The architec-
ture of the model was inspired by the ideas of the models analyzed
and based on the results presented in this paper|6].

The remainder of the paper is structured as follows: In the next
section[2], the application of image processing for the detection of the
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15 Puzzle and the preprocessing for classification is described. Sec-
tion Bl describes the classification and the architecture of the model
and presents a method for solving the 15 Puzzle. In section [4, the
performed experiments and their setup are described and presented
in section [f] Section [0] discusses and analyzes the results. A conclu-
sion is given in the last section [7}

2 Image Processing

When programs process images, factors such as dirt, shadows, or
brightness are important as they can prevent images from being
processed correctly. Image processing is used to eliminate or mini-
mize these factors. It works by applying filters to images to remove
unwanted features while highlighting the most important ones.

The following section describes how image processing is performed
to preprocess the puzzle to classify the digits in section [3] The open-
source library OpenCV 4.5.3.0 for Java was used for image process-
ing. It contains a variety of techniques and algorithms for image
processing and computer vision, some of which were modified for
this application.

2.1 Puzzle Detection

Before the puzzle in an image can be detected, the image needs to
be preprocessed to remove image noise or artifacts. First, the in-
put image (Figure is converted to grayscale, as the RGB color
channels are not needed for further processing. After conversion to
grayscale (Figure , the image is blurred using a Gaussian blur
filter, which removes content such as noise or edges. This is accom-
plished by convolving the image with a low-pass filter kernel. The
kernel is a two-dimensional 7 X 7 matrix and is used to combine the
values of the surrounding pixels to create a new value for each pixel
in the image. Adaptive thresholding is then used to compensate for
different lighting conditions and contrasts to highlight the puzzle
from the background. It ensures that the threshold for each pixel is
calculated based on the image intensity of the surrounding pixels. If
the pixel value is greater than the threshold, the pixel value is set to
white; otherwise, it is set to black, defined as:

255, if sre(x, y) > thresh,
dst(x,¥) = {0 else

[ (1)



4 Niklas HoefHlin

where src(z,y) is the current position of the pixel, thresh is the
calculated threshold of the surrounding pixels, and dst(z,y) is the
destination position in the result image. The result is a binary image,
which is then inverted by applying a bitwise NOT operation to each
pixel, defined as:

0, if sre(z,y) = 255,

255, else. 8 @)

dst(z,y) = {
To improve the detection of the grid in the next step, morphological
transformations are applied to the inverted image to remove noise
and to increase the width of the grid lines. Erosion is used to remove
noise. This is accomplished by placing a 3 x 3 structuring element
on each pixel and then comparing the surrounding pixels to the
corresponding pixel in the structuring element. If all the surrounding
pixels do not have a value of 255, the pixel in the center is set to 0,
and the noise is removed. The erosion operation is defined as:

dst(z,y) = min sre(x + 2’y +v/ 9 (3
( y) (z',y"):element(x’,y’)#0 ( y y) l ] ( )
After erosion, dilation is applied twice in succession. Dilation is the
opposite of erosion and sets the center pixel to 255 if at least one
surrounding pixel has a value of 255. The dilation operation is defined
as:
dst(z,y) = max sre(z + 2",y +v/ 9 (4
( y) (z',y"):element(x’,y’)#0 ( y y) l ] ( )
The result (Figure of the morphological transformations are then
used to find the largest contour.
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(a) Input image (b) Grayscaled

(c) Bitwise inverted (d) Detected puzzle

Fig. 2: Steps of applying separate filters to detect the puzzle grid.

After preprocessing the input image, the largest contour in the
image is searched. This is accomplished using OpenCV’s built-in
method findContours(). The method returns all contours that are
connected, which are then sorted with a separate method to find the
largest contour. The contour contains a total of four points defined
as P = (z,y), where these points represent the x and y coordinates
of the corners of the puzzle grid. To visualize the detected puzzle, a
debugging method was implemented, which connects the four largest
points into a green frame (Figure .

2.2 Perspective Transformation

The next step is to extract the detected grid and transform it into
a top-down view. For the transformation, OpenCV provides a built-
in method warpPerspective(). The coordinates of the corners of the
detected puzzle represent the region of interest (ROI), which is the
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shape that is then extracted and transformed into a square (Figure

3a).

(a) Warped puzzle (b) Grid removed

Fig. 3: Steps to prepare the tiles for extraction.

To prepare the tiles for extraction, the transformed puzzle is fil-
tered again as described in[2.1], and then the grid is removed from the
puzzle (Figure . A static filter is used to override the white grid,
as the perspective and dimensions are identical in each puzzle. This
is achieved by dividing the height and width by four and drawing
lines both horizontally and vertically in this interval.

2.3 Digit Extraction

The last step of image processing is to extract the digits from the
puzzle. The puzzle (Figure is divided into 16 equal squares,
each square containing one tile. This is accomplished by defining
two points P, = (x,y), P» = (z,y) for each tile. The first point is
the lower-left corner, and the second point is the upper-right corner
of the tile.

After all tiles have been extracted (Figure @, the digits have to
be detected (Figure[dh]) and extracted from the tiles. This is achieved
as in using the findContours() method, which determines the
points of the ROI to be extracted.

The extracted digits (Figure each have different pixel dimen-
sions. The model expects an image of 28 x 28 pixels. Therefore, all
digits are recalculated using a scaling algorithm that preserves the
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aspect ratio. The algorithm scales the image larger or smaller ac-
cording to the dimensions of the digit, where the dimensions of the
digits (w, h) end up being (w = 24, h < 24) or (w < 24, h = 24) pix-
els. To rescale the digits, the following equations are used, defined
as:

(5)

new width = (—max(24,24)> :

max(w, h)

24,24
new height = (M) - h

max(w, h)

(6)

After scaling, the digit is centered and evenly padded to a size of
28 x 28 (Figure [4d).

C

(a) Extracted (b) Detected (c) Extracted (d) 28 x 28
tile digit in a tile  digit from a pixel tile with
tile padding

Fig. 4: Steps to prepare each digit for classification by the model.

3 Classification

People learn to recognize objects in their environment by observing
numerous objects of a similar type. Machine learning works similarly.
In the context of image recognition, it tries to extract features from
objects to recognize similar objects in other images. The following
section discusses the dataset used, the techniques applied to augment
the dataset, describes the architecture of the model, presents its
training results, and briefly elaborates on solving the puzzle.

The open-source library Keras and TensorFlow 2.11.0 under Python
3.10 were used to train the model. Keras, which acts as an interface
to the TensorFlow library, allows for the fast creation and training
of deep neural networks.
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3.1 Dataset

Training a CNN requires a large amount of training data. For this
reason, the MNIST[2] dataset was used to avoid exceeding the project’s
time frame while still achieving good recognition results. The dataset
contains 70,000 black and white images of handwritten digits, orga-
nized into 60,000 training and 10,000 test images, each with a size
of 28 x 28 pixels.

3.2 Data Augmentation

To improve the accuracy of the model, data augmentation techniques
were applied to transform the MNIST dataset during the training
process. Data augmentation is the process of creating new train-
ing data by applying various transformations to existing data. The
following parameters and techniques were applied to the MNIST
dataset using Keras’ ImageDataGenerator during the training pro-
cess, ensuring that the generated images are always unique:

rotation_range_val = 2
width_shift_val = 0.15
height_shift_val = 0.15
shear_range_val = 10
zoom_range_val = [0.9, 1.1]

Fig. 5: Parameters of the ImageDataGenerator

e rotation_range_val: defines the maximum random angle by which
an image is rotated (Figure .

e width_shift_val & height_shift_val: define the maximum ran-
dom shift of the image in the horizontal and vertical directions.
These values indicate the maximum percentage of the image that
can be shifted (Figure [6d).

e shear_range_val: defines the maximum shear angle by which
an image is randomly sheared. Shearing is a transformation that
changes the shape of the image by changing the angles of the

corners (Figure [6d).

e zoom _range _val: defines the random zoom in/out factor of the

image (Figure [6¢).
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a) Original ) Rotated ) Shifted ) Sheared ) Zoomed

Fig. 6: Images generated by the process of data augmentation using Keras.

The parameters were selected based on an automated evaluation
created for this application. The evaluation compared the results of
the training accuracy of the trained models. The parameters with the
highest accuracy were saved, and after each iteration, the parameters
were slightly adjusted.

3.3 CNN Architecture

The digit classification was performed using a CNN, an artificial
neural network that typically consists of several convolutional layers
followed by pooling layers. These layers are responsible for recog-
nising and classifying the input image. The input images are three-
dimensional arrays with the shape (28,28, 1). The model expects an
input tensor of the shape T' = (b, h,w,c) = (1,28,28,1). Where b
is the batch size, h the height, w the width and ¢ the number of
channels. The batch size refers to how many images are processed
in a single forward and backward pass through the neural network.
The height and width refer to the dimension of the input image,
which is 28 x 28, the number of colour channels is 1, since the image
is in grayscale. The image must be transformed from (28,28,1) to
(1,28,28,1) in order to be processed by the model.

The architecture (Figure [7)) of the trained model consists of sev-
eral layers that sequentially extract the visual features of the images
and learn to associate them with their respective classes. The model
consists of feature extraction and classification, which are divided
into two classes.
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Image: 28 (height) = 28 2DConvolution with 55 2DConvolution with 525
{width) = 1 {channel) kernel, 32 filter: 28x28x32 kernel, 64 filter: 8x8x64

Dropout p = 0.05
h 4 h 4

2DConvolution with 5x5 2DConvolution with 5=5
kernel, 32 filter: 24x24=32 kernel, 64 filter: 4=4xG54
|
Batch normalization, RelLU Batch norma;zaﬁnn, RelU
2DMaxPooling with 2=2 2DMaxPooling with 2=2
kernel: 12=12=32 kernel: 2=2=64

Dropout p =*D.|}5, flatten

Dense: 10 fully Dense: 84 fully Dense: 128 fully Dense: 256 fully
connected neurons connected neurons connected neurons connected neurons

Batch normaliz ation, Batch normalization, Batch normalization,
ReLU,
Dropout p = 0.05

Qutput 1 of 10 classes

Fig. 7: Architecture of the trained CNN.

The first class of the model consists of two convolutional blocks
with two 2D convolutional layers, a batch normalisation, a ReLLU
activation function followed by a 2D max pooling operation with
a 2 x 2 kernel and a dropout layer with a dropout of 5%. Each
convolutional layer uses a 5 x 5 kernel and the ReLU activation
function. The convolutional layers in the first block use 32 filters
and those in the second block use 64 filters.

The convolutional layers are responsible for extracting features
from the input data. This is done by using filters. The number of
filters determines how many features are extracted from the image
region. The size of the image region per filter depends on the size
of the kernel. Batch normalisation is responsible for normalising the
output of the previous layer, allowing the model to be trained faster
and more easily. The activation layer with the ReLLU activation func-
tion is responsible for introducing non-linearity, which helps the CNN
to recognise more complex patterns and relations in the data. The
2D max pooling layer extracts the highest element in a feature map
and reduces the size of the feature map. This method preserves the
most important information. The dropout layer reduces overfitting
by randomly setting a neuron’s input to zero, preventing the model
from learning specific features unique to the training data.
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The second class of the model consists of three fully connected
layers. By flattening the data into a one-dimensional format, the
fully connected layer can use it. The layers contain 256, 128 and 84
neurons and the ReLU activation function respectively. Each neu-
ron in a layer is connected to each input neuron in the next layer.
Each layer is followed by a batch normalisation and a ReLLU activa-
tion function. The last layer is preceded by a dropout layer with a
dropout probability of 5%. The last layer consists of 10 neurons that
form the 10 class probabilities for the digits 0-9 with the softmax
activation function. Sparse categorical cross entropy was used as the
loss function and Adam as the optimiser.

3.4 Training

The model was trained for a total of 23 epochs (Figure[)). A callback
function was used to automatically monitor validation losses and
stop training after five epochs if there was no improvement. The
state of the model after the 23 epochs was then saved and converted
to a TensorFlow Lite model. The batch size during training was 500,
and the number of training images was 60,000, resulting in a total
of 120 iterations for each epoch.
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1.000
0.996 4

0.992 1 ==

0.988 - -_—

0.984 /

0.980

Accuracy

0.976
0.972

0.968
— Training Accuracy
0.964 Validation Accuracy

0.960 T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26

epoch

Training and Validation Loss

0.20
—— Training Loss

0.18 i
Validation Loss

0.16
0.14 1
0.12 4
0.10
0.08
0.06 T~

0.04 —— ;
0.02 : ——

Cross Entropy

T
0 2 4 6 8 10 12 14 16 18 20 22 24 286
epoch

Fig. 8: Convergence plots of accuracy and loss of the model after the training.

The model achieved an accuracy of 99.42% with a loss of 2.01%
on the training data and an accuracy of 99.36% with a loss of 2.21%
on the validation data.

3.5 Solving

To solve the 15 Puzzle, the Iterative Deepening A* (IDA*) algo-
rithm, as described in the papers [10] [11], was used. This informed
search algorithm calculates the optimal solution to the puzzle using
the linear conflict heuristic [12]. It involves classifying the prepared
28 x 28 images from section [2.3 by the model from section [3.3] and
transforming them into a two-dimensional array. The IDA* then re-
turns an optimal solution if the arrangement of the tiles is valid,
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otherwise, the puzzle has to be adjusted manually to obtain a valid
arrangement.

4 Experiments

The experiments aim to determine how the accuracy of the classifi-
cation of the single digits is related to the reliability of the app. To
draw conclusions about accuracy, 100 printed puzzles were labeled
and classified by the app. Each puzzle consists of 20 single digits, re-
sulting in a total of 2000 single digits for the 100 puzzles. The digit
zero was not included in the experiments as it is not part of the 15
Puzzle. Additionally, a method was implemented to return statistics
about the classified puzzles to the app, which were then provided to
a Python script that generated a confusion matrix from the collected
data.

Fig.9: Images of printed 15 Puzzles that were used in the experiments.

5 Results

In the experiment, a total of 100 puzzles with 2000 digits were classi-
fied and evaluated. The trained model was able to achieve an overall
accuracy of 91.88% over all classified digits. Additionally, a total of
43 out of 100 puzzles were fully classified correctly without the need
for digit adjustments, resulting in a puzzle accuracy of 43%.
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Predicted label
5

1 2 3 7 8 9
i 06.38% 27.00%
771/800 27
5 97.00% | 1.50% | 1.00% 3.00% 1.00%
194/200| 3 2 3 1
5| 012% 97.00% | 0.50% | 0.50% 2.00% | 1.00% | 1.00%
1 194/200[ 1 1 2 1 1
4 1.50% | 0.50% |96.00% 1.00% 2.00%
3 1 [192/200 1 2
o
=) 062% 97.50% | 3.00% 1.00% | 3.00%
v 5 195/200, 3 1 3
=
6| 0:38% 1.00% | 1.00% |95.00% 5.00%
3 2 2 |95/100 5
;] 2:38% | 1.00% | 1.00% 1.00% [65.00% | 1.00%
19 2 2 1 |es/100| 1
8 0.50% 1.00% | 1.00% | 2.00% |92.00% | 2.00%
1 2 1 2 |92/100| 2
o] 0:12% 1.50% 91.00%
1 3 91/100

Fig. 10: Confusion matrix with a total of 2000 classified digits from 100 puzzles.

6 Discussion

The accuracy of the model in classifying the digits was 91.88%, and
a total of 43 out of 100 puzzles were fully classified. In practice,
however, often only 1-3 digits were misclassified, leading to the puz-
zle being considered incompletely recognized. The digit 7 was the
most frequently misclassified digit, being classified as 1 for 27 times.
Nevertheless, it can be concluded that the application works reli-
ably, considering that 20 digits have to be correctly classified in each

puzzle.
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7 Conclusion and future work

This paper presents a method to detect, classify, and solve 15 Puzzles
in an Android application using image processing and classification
by a convolutional neural network. During the development of the fil-
ters and the classification of the digits, weaknesses of the application
were revealed. When detecting digits, as described in the section,
problems occurred when the stroke of the digits was not continuous
or the thickness of the digits was too wide or too thin. The detec-
tion of these digits could be improved by developing dynamic filters
that apply specific parameters based on different aspects of the dig-
its. In the classification, there were problems with the recognition of
the digits 1, 7, and 9 due to a different notation of the digits. The
MNIST dataset used contains only a limited number of digits with
the European notation of these digits. To improve the classification,
this problem could be solved by creating a new dataset that com-
bines digits from the MNIST dataset with digits of the European
notation.
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