Application of Reward Learning to generate
news

Thorben Schomacker, Stephan Pareigis

Hamburg University of Applied Sciences, Department of Computer Science,
Hamburg, Germany
thorben.schomacker@haw-hamburg.de
stephan.pareigis@haw-hamburg.de

Abstract. This paper examines the usage of proximal policy optimiza-
tion applied to pre-trained neural language models based on the trans-
former architecture. This approach is then used to generate convincing
News.

Keywords: natural language processing - reward learning - Transformer
- reinforcement learning - proximal poliy optimization - attention-based
models - deep learning

1 Introduction

Today’s neural language processing (NLP) models such as DeBERTa [7] are
starting to outperform human results on common metrics such as GLUE and
SuperGLUE. This does not indicate that the models are reaching the real human
performance in natural language understanding but that the current metrics are
getting pushed to their boundaries in evaluating current models. This leaves a
demand for evaluating model performance beyond the existing metrics. GLUE
and SuperGLUE are both basically mathematical indicators. An alternative way
of evaluating model performance is the usage of judges. A judge could be human
labeler or an additional model. |18] developed a concept of how a human-in-
the-loop approach can be used to evaluate and optimize the performance of
models using reinforcement learning. Their idea is similar to Generative Ad-
versarial Nets (GANs) introduced in [6]. The GAN architecture consists of two
main components: a generator model and discriminator model. The generator
model generates outputs and the discriminator model evaluates the quality of
the generator’s output. [18] used human labelers as discriminators. Another re-
cent application of a generator-discriminator approach in NLP is ELECTRA.
ELECTRA [4] improved the benefits of the masked language modeling task by
not only replacing the selected token with the MASK token but with a token, that
is very similar to the original token. And afterwards training a discriminator to
restore the original token based on the token’s context. Thereby enabling the
model to create a more differentiate token representation, which enriches the
model’s a language understanding capability.

2 T. Schomacker, S. Pareigis

In this paper a generator-discriminator approach is used and trained with
Proximal Policy Optimization (PPO) to solve a NLP task. The implementation
follows the findings and ideas proposed in 18], uses the trl library [15] and pre-
trained models provided by [1]. The task of the experiments is to disguise fake
news to convince a fake news classification model (discriminator) of the output’s
authenticity.

This paper is divided into eight sections. Section [I] provides an introduction
into the topic of this paper. Section 2] gives background information needed to
understand PPO, which is discussed in section [3] Section (] talks about pre-
trained language models and section [5| explains how these models can be fine-
tuned based on human preferences. Afterwards section [f] elaborates the details
of the implementation used in the experiments in section[7] The section, section
[B] discusses the results of the experiments and delivers an outlook.

2 Background

This paper highly relies on the mechanisms and approaches in [18]. They are
built on top of two ideas that are widely used in reinforcement learning. To
better understand the novelties and advantages of [18]’s approaches the following
subsections further explain these two ideas.

2.1 Policy Gradient Methods

Classical reinforcement learning algorithms (further explained in [12} p. 321]) are
action-value methods. That means their policy is completely based on assigning
a value to each action. Policy gradient methods learn a parameterized policy.
This policy allows the model to select actions without assigning a specific value
to the action. Despite this a value function can still be used to learn the policy
parameter without requiring it for action selection. For vanilla policy gradients
(e.g. the REINFORCE algorithm) the objective used to optimize the neural
network looks like:

LPG(Q) =K, [logwe(at|st)flt} (1)

Where A could be the discounted return, as in REINFORCE or the advantage
function. By taking a gradient step on this loss with considering the network
parameters actions that led to a higher reward will be incentivized.

2.2 Trust Region Methods

The vanilla policy gradient shown in equation [I] uses the log probability of the
action to calculate the impact of the actions. [§] introduced an alternative of
calculating the impact of the action. It uses the probability of the action under
the current policy 7, divided by the probability of the action under your previous
policy moq:

Application of Reward Learning to generate news 3

uICAED)
ri(0) = 2
() Weold(at‘st) @)
So r(f) greater than 1 indicates that the action is more probable for the
current policy than it is for the old policy. When () is between 0 and 1 the
action is more probable for the old policy than for the current. Trust Region
Policy Optimization (TRPO) build an objective function with r(6):

LTRPO(Q) _ Et [779(at|3t) At:| — Et [T(H)At} (3)
Toold(at|st
One problem discussed in [§] is that 7(f) tend to be really big when the
action is, by far, more probable in the current policy. This big r(f) leads to
taking big gradient steps that might dramatically change the policy in a negative
way. |8] adds several mechanisms such, as KL Divergence constraints, to tackle
this problem help guarantee that it is monotonically improving.

3 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) algorithm was introduced in [11] and
became one of the most popular reinforcement learning methods. It is an on-
policy algorithm that means the policy is updated based on small batches of
collected experiences of interacting with the environment. PPO does not have a
replay buffer, so once the policy is updated, the batch is discarded. PPO’s wide
acceptance and usage are mainly because it is sample efficient and because it is
easy to implement and to tune. Furthermore PPO is a policy gradient method
which means that it can only learn online. The agent follows his own policy and
can pick actions. The corresponding gradient estimator is computed as follows:

§ =B, [Vglogmg(as)s:) Ay (4)

where 7y is a stochastic policy and A, is an estimator of the advantage func-
tion at timestep t. This estimator is basically a neural network which estimates
the future reward. But this estimate is noisy. Furthermore PPO has three key
features which are mainly responsible for its success. The following subsection
will further discuss them.

3.1 Clipped Surrogate Objective

The previous subsection [2.2] about TRPO described the problem that a large
r(0) can lead to drastic changes of the police. These changes could destroy a
effortfully trained policy. One way of overcoming this problem is by adding a
few additional mechanisms as discussed in [§]. Another, more simple way, was
proposed by Schulman et al. in [11]. They solved the problem with the Clipped
Surrogate Objective (CSO):

4 T. Schomacker, S. Pareigis

same objective same, but r(8) is clipped
from before between (1-e,1+¢g)

111i11(r-,(b‘)_4;.c-lil>(:-, (0),1 —e.1+4¢) _31,)}

L(_'JT.IP(H) _ EF

min of the same objective from before and the clipped one

Fig.1: The term ry(6)A; (highlighted in blue) describes the as r(0)A; in Eqn.
The second term (red) describes r4(6) clipped between (1 - e, 1 + e). Note
that suggested e = 0.2 so r can vary between (0.8, 1.2). The minimization
of both terms in highlighted in green. Hllustration by

Fig. 2] shows two possible values of the objective in Fig.

A<D
LCLIP A0
1—-¢e1
1 — ™
I i
I i
] i
1 i
i
] i
]
|
] '
1 i
| i
] '
| i
+—+ id !
CLIP
0 1 1+ L
(a) In this scenario the ac- (b) In this scenario the ac-
tion had an estimated posi- tion had an estimated neg-
tive effect on the outcome. ative effect on the outcome.

Fig. 2: Comparison of two different scenarios of the CSO depicted by

A further illustration of CSO is given in Fig. 2] This illustration compares two
different values of the CSO. Fig. [2a] shows what happens in the case of an action
becoming a lot more probable under the current policy than it was for the old:
the r-value gets clipped. This clipping prevents from stepping too far in changing
the policy. Due to the fact that this is just a local approximation and sample
of our policy, taking such great steps would not be accurate. Clipping has the
effect of blocking the gradient in the backward pass. The flat lines after 1+ ¢ in
Fig. 2al indicates this effect. Fig. [2b| depicts the same mechanism but in the case
where the action would have an estimated negative effect on the outcome.

Another issue that the CSO solves is r(6) growing indefinitely. This scenario
can be caused by a gradient step that made an action a lot more probable
but make our policy worse. The Clipped Surrogate Objective allows to 'undo’

Application of Reward Learning to generate news 5

such steps. The function will become negative in this case so it will cause the
gradient to move in the opposite direction proportionally to the value of r(0).
The mechanism also takes effect in the scenario depicted in Fig. These 'undo’
regions are the reason why the minimization term in Fig. [I| must be included.
If this minimization term would not be included these regions would be flat
(gradient = 0), so 'undoing’ would not be possible.

3.2 Adaptive KL Penalty Coefficient

[11] also discussed an alternative or an addition to CSO: Using a penalty on KL
divergence. And to adapt the penalty coefficient so that some target value of the
KL divergence dy,,4 is achieved each policy update. Despite the fact that in the
experiments in [11] KL penalty performed worse than the CSO, [18] added KL
penalty to their implementation.

[11] performed the following steps in each policy update, in the simplest instan-
tiation of this algorithm:

Using several epochs of minibatch stochastic gradient descent (SGD), opti-
mize the KL-penalized objective

[KLPEN g\ _ [Mﬁf KL [10,(- .
i Ootalalse) BEL[m0otal:|se), mo(-|st)] ()
Compute d = E,KL [7001a(-|5¢), T (-|5¢)]
~ I d < diarg/1.5,5 < B/2
- Ifd>dtarg X 15,5%5X2

The updated S is used for the next policy update. With this scheme, occa-
sionally policy updates, where the KL divergence is significantly different from
dtarg, can occur. These occurrences are rare and (adjusts quickly. [11] heuris-
tically chose the parameters 1.5 and 2 but the algorithm is not very sensitive
to them. Another hyperparameter is the value of g its tuning can be neglected
because the algorithm quickly adjusts it.

3.3 Multiple epochs for policy updating

The previously discussed CSO or alternatively the KL-Penalty allow PPO to run
multiple epochs of gradient ascent on your samples without causing destructively
large policy updates. This leads to a more efficient way of using your data and
helps to reduce sample inefficiency. Algorithm [1| shows the usage of multiple
epochs and the parallel actor approach popularized in [9].

Running K epochs of gradient ascent on the trajectory is one central feature
of PPO. As stated in [11] vanilla policy gradient methods are unable to run
multiple epochs because they are possibly taking taking too large steps when
changing the policy. But the previously discussed mechanisms allow PPO to run
multiple epochs.

6 T. Schomacker, S. Pareigis

Algorithm 1 PPO, actor-critic from [11]

1: for iteration=1,2,... do
2: for actor=1,2,...,N do

3: Run policy 70s14 > Sampling the environment with pioia
4: Compute advantage estimates Ay,... Ar

5: end for

6: Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT

7: Oald «~— 0

8: end for

For each iteration, after line 3 and at line 6 in Algorithm [I] the current policy
7w will be exactly equal to m,4. That means at first, none of the updates will be
clipped and it is guaranteed that these example affect the policy. As the policy
is updated over multiple epochs, the objective will eventually start hitting the
clipping limits. So, the gradient go to 0 for these samples and the training will
gradually stop for this iteration.

4 Pre-Trained Models

Every machine learning model can only be as good as the data, it is trained on.
In the field of NLP labeled and prepared data is rather sparse in comparison to
the abundant supply of unlabeled data. The idea behind transfer learning is to
use this unlabeled data to pre-train models for world knowledge and a general
language understanding. These pre-trained models are afterwards fine-tuned on
task-specific data to solve a particular task. Thereby the task-specific, labeled
and prepared data is more efficient used. The first highly successful approach of
bringing transfer learning to NLP, was the Transformer architecture introduced
in [13]. The models used in this paper are also based on this architecture and
follow the pre-train and fine-tune approach.

5 Fine-Tuning Language Models from Human
Preferences

One of the greatest challenges in training neural language models is defining
a metric to which the model is optimized and evaluated on. The current stan-
dards such as GLUE and SuperGLUE are based on comparing the outputs of
the model to a gold standard. The problem of this way of evaluating the model’s
performance is that the task output is reduced to one correct answer: The gold
standard. But for many NLP tasks there is not one correct answer but many.
Optimizing the model towards only one answer leads to a model with a bias. Ad-
ditionally papers like [3] showed that language models in general are vulnerable
to biases in the input data.

Application of Reward Learning to generate news 7

One way of reducing the bias of the results of neural language models could
be increasing the amount of training data by e.g. data augmentation as shown
in [14]. This could add more variance to the model’s output but still carries
at least some of the bias of the original input data. Another way could be the
involvement of human judges. This approach is detached from the original gold
standard set and is based on the subjective evaluation of a human judge. This
could lead to a metric much closer to the way the human language understanding
is evaluated naturally. The approach proposed in |18] implemented this idea.
They included the label of human labelers to calculate the reward of the model’s
generated output. Thereby applying the previously discussed PPO method to
fine-tune pre-trained language models with a human-in-the-loop approach. Fig.
depicts the involvement of Human labelers in the training process.

Reward model training

confinuation (x4}

reward x4 n

Policy training

centinuaton

Fig. 3: Depiction of the architecture of policy training and the involvement of a
human labeler in training described in [1§]

6 Implementation Details

The implementation used in this paper is built on top of the Transformer Re-
inforcement Learning library [15] initiated by Leandro von Werra. The goal of
this library is to fine-tune pre-trained models from the transformer library [1
with [18]’s reward learning approach discussed in section [5} Additionally [15]
uses PPO2 which is a PPO optimized for using it on GPU [2]. It is basically the
same as the normal PPO but with a few modifications.

In this paper instead of a human labeler there will be a pre-trained model which
is fine-tuned to classify inputs. The generator model is fine-tuned on a similar
data set as the classifier and tries to maximize a reward, which is based of the
classifiers output, by generating text. This is shown in Fig. [

8 T. Schomacker, S. Pareigis

fine-tuned language train classifier

Q Soptimise reward

Fig.4: Architecture of the experimental setup

6.1 Transformer Models

BERT [5] and GPT-2 are both representatives of transfer learning models
in NLP which are further discussed in section [4] They are both based on the
transformer architecture . Despite the fact that both are very well applicable
to numerous tasks, GPT-2 is more often used in text-generation task such as
continuing given inputs. BERT is one of the most used models for processing
queries on data for instance classifying text by its sentiment. In this paper GPT-2
is the basis for the generator component and BERT for the classifier.

6.2 Value Head

introduced the value head. It is an additional head on the GPT-2 model
that estimates a scalar for each output token. These estimates on the current
states value are require in order for PPO to work.

6.3 KL-controllers

To prohibit the learned policy from moving to far away from the original language
model used the KL divergence between the new policy and the reference
policy, which in this case is the language model before PPO training. This KL
divergence serves an additional reward signal. It was further described in section
By this additional reward signal a large KL-divergences gets punished and
staying close to the reference is rewarded.

used two KL-controllers which are also presented in : an adaptive log-
space proportional controller and a fized controller. found out that models
trained with different seeds and the same KL penalty 5 are sometimes hard to
compare because they resulted in quite values of K L(m,p). To overcome this

Application of Reward Learning to generate news 9

problem Ziegler et. al. used the log-space proportional controller in some exper-
iments in |18] to dynamically vary § to target a particular value of K L(m, p)

KL — KLigrge
e = clip((ﬂ_tvp target

,—0.2,0.2
KLtarget >

Bir1 = Be(1+ Kpgey)

Where [18] used Kg = 0.1

7 Experimental Setup

In the following section a few experiments will be conducted to find out which
hyperparameter setup is best suited to generate convincing news. It will start
from the experimental setup described in |15] as a baseline.

7.1 Data

For the experiments in this paper Clément Bisaillon’s "Fake and real news
dataset” [[| was used. It contains in total 38729 news articles with 46% (17903)
fake and 54% (20826) real news articles. All articles are written in English. The
majority of them is dealing with politics and/or with topics related to the USA.
Thus making the data quite homogeneous. This homogeneity makes it easier for
the classifier and for the generator to determine nuances that distinguishes fake
from true news. Originally the fake and real news where stored in two separated
tables each table had four columns:

title: The title or headline of the article

text: The text or content of the article

subject: The subject or category of the article
date: The date the article was originally published

In the process of data preparation both tables where joined together with an
additional column label which has the value 1 if the article is real and 0 if the
article is fake news. Tab. [I] shows example entries. For the experiments only the
title and the label were used. Instead of the title the text could be used but in
most the cases the title itself indicates fake news in a much shorter way than the
complete content text. So the generators output can also be shorter to influence
the classifiers estimation of the modified fake news.

! https://www.kaggle.com/clmentbisaillon /fake-and-real-news-dataset

https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset

10 T. Schomacker, S. Pareigis

label|title text subject date

0 Sheriff David Clarke|On Friday, it was|News December 30, 2017
Becomes An Internet|revealed that former
Joke For Threatening|Milwaukee Sheriff
To Poke People ’In|David Clarke, who

The Eye’ was being considered
for ...
1 As U.S. budget fight WASHINGTON politicsNews|December 31, 2017

looms, Republicans|(Reuters) - The head
flip their fiscal script |of a conservative Re-
publican faction in the
U.S. Congress, who
voted...

Table 1: Example items from the fake and real news data set

7.2 Results

The classifier is a binary classification model based on the pre-trained bert-base-cased.
It was trained with a learning rate of le — 5 and for 1 epoch on the data. The
generator is based on gpt2 and was trained for 6400 steps with a batch size of

256, a forward batch size of 16, a text input length of 5, a text output length of

15, a target of 6, 10000 as horizon, gamma 1, a range for clipping in PPO policy
gradient loss of 0.2, a range clipping values in loss calculation of 0.2 and a scaling

factor for value loss of 0.1 on the data. The following paragraphs show experi-

ments on the learning rate, the initial kl coefficient value and the lambda value

with the purpose of tuning these hyperparameters to further improve results.

Lambda: Lambda and gamma are the two factors that determine the degree to
which the previous advantage influences the current advantage. Gamma is set
to 1 and the baseline value of lambda is 0.95. Fig. [5] shows that a value between
0.95 — 1.01 perform well. Values greater than 0.95 seem to slightly increase the
performance. Decreasing lambda slowed the convergence of the mean rewards
towards the maximum value. This maximum seems independent to lambda. So
a high value lambda value speeds up the training process. The baseline value of
0.95 seems sufficient.

Leaning rate: The learning rate determines the step size of the gradient descent.
A too small learning rate slows down the the process of finding a minimum.
In this case very small improvements of the policy over time so that the initial
policy is almost unchanged. A too big learning rate results in drastic changes
of the policy. This could destroy an effortfully trained policy. A big part of
PPO is prohibiting too large changes of the policy. So it seems plausible that
Fig. [0 indicates that the model’s performance is very sensitive to changes of the
learning rate. A small reduction of the learning rate decreased the steps needed to
converge and raised the maximum achieved mean reward. In this setup 0.00001
performed the best.

Application of Reward Learning to generate news

— lam: 0.25 Ir 0.0000141 init_kl_coef: 0.2 — lam: 0.5 Ir 0.0000141 init_kl_coef: 0.2
— lam: 0.75Ir 0.0000141 init_kl_coef: 0.2 — lam: 0.85Ir 0.0000141 init_kl_coef: 0.2
— lam: 0.93 Ir 0.0000141 init_kI_coef: 0.2
== lam:0.95Ir 0.0000141 init_kl_coef:0.2 (baseline)

— lam: 1.01 Ir 0.0000141 init_kl_coef: 0.2

0 10 20 30 40

Fig. 5: mean reward with lambda € {0.25,0.5,0.75,0.93,0.95,1.01}

== lam:0.95Ir 0.00000141 init_kl_coef:0.2 (baseline) — lam: 0.95 Ir 0.00001 init_kl_coef: 0.2
— lam: 0.95 Ir 0.000012 init_kI_coef: 0.2 — lam: 0.95 Ir 0.000141 init_kI_coef: 0.2
= lam: 0.95 Ir 0.000141 init_kI_coef: 0.2 = lam: 0.95 Ir 0.00141 init_kI_coef: 0.2

4
2
0
-2
-4
0 10 20 30 40
Fig. 6: mean reward with learning rate

{0.00001, 0.000012, 0.0000141, 0.000141,0.00141}

11

12 T. Schomacker, S. Pareigis

Initial KL-Coefficient: The Initial KL penalty coefficient is used for the adaptive
and the linear control. It is the initial the value and determines the factor of the
KL penalty. Fig. [7] indicates that values smaller than the baseline value of 0.25
increase model’s performance. In this particular setup 0.15 performed the best.

== lam:0.95Ir 0.0000141 init_kl_coef:0.2 (baseline)
— lam: 0.95 Ir 0.000(1 init_kI_coef: 0.05
= lam: 0.95 Ir 0.0000141 init_kI_coef: 0.1 = lam: 0.95 Ir 0.0000141 init_kI_coef: 0.15

0 10 20 30 40

Fig. 7: mean reward with an initial KL-coefficient € {0.05,0.1,0.15,0.2,0.25,0.3}

8 Discussion

The goal of this paper was to generate convincing news. The experiments in
section [7] indicated that the classifier could be convinced to some degree, that
the generated news are true news. The high rewards show that the PPO-based
fine-tuning indeed increase the degree to which the classifier is convinced. The
baseline for the experiments is the hyperparameter setup proposed in the ” Tune
GPT?2 to generate positive reviews” experiment which itself if based on the
findings in . Their proposed learning rate of 0.0000141 can be slightly de-
creased to 0.00001 the achieve a better performance as seen in Fig.[f] The model’s
performance seems very sensitive to this hyperparameter so future experiments
could aim to find even a better value for the learning rate. Additionally the
experiments in this paper support the baseline value of 0.95 for lambda. Values
between 0.9 — 1.01 all performed similarly (see Fig. |5). Tuning lambda seems
to have only little influence on the model’s performance. Experiments on the
Initial KL-Coefficient (Fig. @ showed that values below the initial value of 0.2
performed well. In this particular setup 0.15 performed the best.

Application of Reward Learning to generate news 13

query response reward

POWERFUL! FOR, reasons that are constitutional as well as practical,|1.456
the fight lacked a sink of

WOW! STER, who is said to be similarly unduroured by the|4.069
pedestrian (07

MUSLIMS conditions.”” President Trump’s recent decision to|4.910
seize a certain for instance, one

WATCH: ESTABL ISHMENT requested floor space for emergency|3.439
maintenance to relieve residents from excessive ve-
hicle load

EPIC TUCKER , who said that after announcement of residency,|3.939
no body is actually required to

This Pill Is 25, stating,” ” Less tanks deaths caused from infighting|4.291
among vehicles taking sides,

US Spends Over $ 100 on car related city council ””concept pro-|3.800
posal”” of electric transportation commuters

DIAMOND and SIL VER, a district general, the police said in the rev-|3.529
elation that he is

WOW! MAJ political president, has said the place of signing of|5.143
the agreement with the defence

GAME OVER SNOWFL|OWER, said noted that: the court packet was dis-|2.092
played due to a request

Table 2: A few example queries from the last batch of the baseline model, the
response or output generated by the model and its achieved reward (truncated
after third position after decimal point)

14 T. Schomacker, S. Pareigis

Despite the fact that the generator convinced the classifier, human readers
would easily spot the results in Table [2] as computer-generated fake news. Most
of the generated news make sense in a syntactical way but some highly lack
quality when it comes to semantics. Increasing the syntactical-performance could
be done by adding a grammar and spellchecker such as the Stanford Parser E| to
the reward function or training an additional grammar-discriminator. Increasing
the semantical performance of language models is an unsolved problem in NLP.
They are plenty of leverages that could be applied. One could be the use of
knowledge graphs as in [17]. Another could be the improvement of the language
representation as in [7]. Nonetheless all these heuristics or machine learning
approaches are currently far from reaching the quality of a feedback from a
human labeler. So future works could further investigate how human judges can
be more efficiently involved in the process of training NP models based on the
findings in [18§].

List of Abbreviations

CSO Clipped Surrogate Objective

NLP Natural Language Processing
PPO Proximal Policy Optimization
SGD stochastic gradient descent
TRPO Trust Region Policy Optimization

References

1. Huggingface’s Transformers, https://huggingface.co/transformers/

2. PPO2 — Stable Baselines 2.10.2al documentation, https://stable-baselines.readt
hedocs.io/en/master/modules/ppo2.html

3. Bolukbasi, T., Chang, K.W., Zou, J., Saligrama, V., Kalai, A.: Man is to Computer
Programmer as Woman is to Homemaker? Debiasing Word Embeddings, http:
//arxiv.org/abs/1607.06520

4. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: ELECTRA: Pre-training Text
Encoders as Discriminators Rather Than Generators, http://arxiv.org/abs/2003
.10555

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding, http://arxiv.org/abs/18
10.04805

6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative Adversarial Nets 27, https://proceedings.ne
urips.cc/paper /2014 /hash /5ca3e9b122f61{8f06494c97blafccf3- Abstract. html

7. He, P., Liu, X., Gao, J., Chen, W.: DeBERTa: Decoding-enhanced BERT with

Disentangled Attention, http://arxiv.org/abs/2006.03654

Langford, J.: Approximately Optimal Approximate Reinforcement Learning

9. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous Methods for Deep Reinforcement Learning,
http: //arxiv.org/abs/1602.01783

®©

2 https:/ /nlp.stanford.edu/software /lex-parser.shtml

https://huggingface.co/transformers/
https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html
https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/1602.01783
https://nlp.stanford.edu/software/lex-parser.shtml

10.

11.

12.

13.

14.

15.

16.

17.

18.

Application of Reward Learning to generate news 15

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
Models are Unsupervised Multitask Learners p. 24

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy
Optimization Algorithms, http://arxiv.org/abs/1707.06347

Sutton, R.S., Barto, A.G.: Reinforcement Learning, Second Edition: An Introduc-
tion. Bradford Books, second edition edn.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
u., Polosukhin, I.: Attention is All you Need. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 30, pp. 5998-6008. Curran Associates, Inc.,
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Wei, J., Zou, K.: EDA: Easy Data Augmentation Techniques for Boosting Perfor-
mance on Text Classification Tasks, http://arxiv.org/abs/1901.11196

von Werra, L.: Transformer Reinforcement Learning (trl), https://lvwerra.github
do/trl//

Wilson, M.: What is the way to understand Proximal Policy Optimization Algo-
rithm in RL?, https://stackoverflow.com/questions/46422845 /what-is-the-way-t
o-understand-proximal-policy-optimization-algorithm-in-rl

Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: ERNIE: Enhanced Lan-
guage Representation with Informative Entities, http://arxiv.org/abs/1905.07129
Ziegler, D.M., Stiennon, N., Wu, J., Brown, T.B., Radford, A., Amodei, D., Chris-
tiano, P., Irving, G.: Fine-Tuning Language Models from Human Preferences,
http://arxiv.org/abs/1909.08593

http://arxiv.org/abs/1707.06347
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1901.11196
https://lvwerra.github.io/trl//
https://lvwerra.github.io/trl//
https://stackoverflow.com/questions/46422845/what-is-the-way-to-understand-proximal-policy-optimization-algorithm-in-rl
https://stackoverflow.com/questions/46422845/what-is-the-way-to-understand-proximal-policy-optimization-algorithm-in-rl
http://arxiv.org/abs/1905.07129
http://arxiv.org/abs/1909.08593

	Application of Reward Learning to generate news

