Real-time coins detection with ML based
approach on iOS device

Nataliya Didukh, Thor Zhvanko

Hamburg University of Applied Sciences

Abstract. Machine learning model on iOS device is used to recognise
euro coins in real-time. YOLO architecture paper is used to implement
the model from scratch in Keras. The classifier as backbone neural net-
work for object detection based on DenseNet architecture with different
hyperparameter is trained and evaluated on public dataset. The pre-
trained models were converted to perform detection, trained with cus-
tom loss function and evaluated. At the end a developed iOS application
uses detector model to perform real-time detection.

Key words: machine learning, classification, detection, yolo, keras,
tensorflow, tf, data augmentation, custom loss, coremltools, ios, swift,
coremL

1 Introduction

Numismatics is the study or collection of currency, including coins, tokens, pa-
per money, medals and related objects [1]. While the numismatists deal with
coins from different countries and epochs, regular people use one sort of coins of
national currency with different denomination in their day-to-day payments.

Last year has challenged the assumptions and priorities of many businesses,
and consequences of COVID-19 lock-downs with growing economic downturn
will continue to make a tough climate for many industries. Yet pandemic has
positive influence on tech investments and strategy which determine if business
will remain viable and competitive. [2]

According to IT Investment Survey 2020 (Figure 1) cloud computing and
remote collaboration are the major technologies that helps to profit from lock-
downs, and will remain the top investment areas for 2021. At the same time
top 10 investment priorities includes Data Analytic, Machine Learning and Al.
Mostly a year ago most businesses tried to adopt the machine learning and AT in
their business processes experimenting with possibilities for optimisations. With
the pandemic majority turned to the technology to aid their responses, applying
it in different areas e.g. demand forecasting and automation. [2]

Even before the pandemic, the future of cash was being discussed as the use
of digital payments accelerated. Among the main reasons why people change
their payment behaviour during COVID-19 in favor of digital currency are: con-
venience, the risk of being infected via the banknotes, government recommen-
dations to pay cashless and other reasons. [3]



2 Nataliya Didukh and Thor Zhvanko

Fig. 1. CCS Insight Senior Leadership IT Investment Survey 2020

Fig. 2. Total value of banknote circulation in 2020 compared with the previous five
(non-crisis) years (2015-19) [3]

During the COVID-19 pandemic arise an unexpected paradox (see Figure 2)
- increasing demand for banknotes while cash payment is falling down. The
possible explanations for this is that during the pandemic people with low income
cut spending and hold the liquid assets to manage uncertainty. [3]

000 CJO0ibooob 0oo 0000ioo ooboooood

What can do a business to encourage people with accumulated physical currency
during the pandemic to spend them in supermarkets, stores etc. without having
fear to be infected? How can stores maximize the convenience of paying with
cash?

As backbone of potential solution machine learning based approach for de-
tecting and recognising currency in real-time is suggested. The system is con-
strained as proof of concept to recognize only euro coins with denomination: 1,
2, 5, 10, 20, 50 cents and 1, 2 euro, but has the potential to be extended to
detect banknotes. The goal is to create an App with machine learning model
using modern frameworks and be able to deploy it on any embedded device with
constrained computational power.



RT coins detection with ML based approach on iOS 3
{0 JODObOooooo 0oo booocoo Cobobo

Under object detection task we understand building the machine learning model
for detecting the presence, locating with bounding box and classifying the ob-
ject(s) on the image. [4] The major complication of detection task is dual prime
concern: we want know exact location and concomitantly which class it belongs
to. Almost a decade ago it was the most challenging task in Computer Vision
before first successful machine learning model R-CNN (Regions with CNN fea-
tures) was published. [5]

Fig. 3. R-CNN Pipeline [5]

R-CNN model family separates the problem into two main parts: region pro-
posal and classification (see Figure 3). The models are flexible enough to use
different region proposal methods and classification architectures. The prime
advantage is a state-of-the-art accuracy on benchmark datasets: ILSVRC2013,
PASCAL VOC. The major disadvantage is feasibility to use it in real-time ob-
ject detection due to two stage processing that leeds to dramatic slow down. The
pinnacle of model family in context of performance is Faster R-CNN architec-
ture that tackles up to 18 FPS with modern hardware, but despite this videos
are typically shot with at least 24 FPS. It means that Faster R-CNN without
hardware acceleration will likely not keep pace. [6]

Fig. 4. YOLO Pipeline [§]

Given this was obvious that massive bottleneck in problem separation tends
to be somewhat inefficient and focus moved away from two stage detectors. The
researchers paid their attention to CNN models that relies on an unified one-
state systems. The two main architectures are SSD (Single-shot Detector) [7]
and YOLO (You Look Only Once) [8]. The approach involves a single deep CNN



4 Nataliya Didukh and Thor Zhvanko

trained end-to-end, meaning it takes an input and outputs bounding boxes and
corresponding class probability for each detected object. These detectors may
be less accurate in comparison to R-CNN family, but it overcomes region-based
models inference speed. The modern versions of YOLO can detect objects at 45
FPS, and speed optimized Fast YOLO operate at up to 155 FPS on Titan X
GPU. However, the AP (Average Precision) and mAP (mean Average Precision)
drops off on vast scale at this elevated speed. [8]

As basic architecture we decided to use YOLO detector architecture. As
starting point we use YOLO paper to build the suggested in [8] pipeline from
scratch using TensorFlow library and train the model on own designed dataset.

000 0o0ooo 0booodd

On the whole under embedded system we understand the one places into op-
eration for narrow purpose and having the lack of general user interface you
might find on an ordinary PC. Older cellphones would rather have a lot in com-
mon with embedded systems, but obviously contemporary mobile devices are
far away in computational power and versatility. [10]

Our target system iPhone XR based on iOS (Apple Operation System for
smartphones) can run machine learning and general purpose apps developed by
end-users allowing them to perform tasks not determined by the manufacturer.
This generation of iPhone’s has front 12 MPX camera module and system can
provide up to 60 frames per second. In addition the Apple A1l Bionic is a 64-bit
ARM-based system on a chip designed by Apple Inc. that hold first dedicated
neural network hardware that Apple calls a “Neural Engine”. This piece of hard-
ware can perform up to 600 billion operations per second and can be used by
developers for machine learning tasks. [11]

We are going to use iPhone device for real-time inference. Besides inference
Apple provides dedicated API for training custom model on device to perform
typical machine learning tasks. Online training gives possibility to train the
model and save it in the Core ML model format ready to use directly in app. [12]
In our project we use ICC Cloud of HAW Hamburg to train and evaluate the
model, and after covert it to Core ML format using Apple Python tools to
perform object detection. [13]

2 Approach

As we mentioned before in Section 1.2 our decision was to use YOLO detector
architecture. According to YOLO paper authors used pretrained convolutional
layers on the ImageNet 1000-class competition dataset. Afterwards authors use
transfer-learning principle and convert the model to perform a detection. The
final model is able to predict several bounding boxes class probabilities and
objectness score for each detected object. In post-processing step all boxes are
processed with non-maximal suppression algorithm to fix multiple detection (see
Figure 4).



RT coins detection with ML based approach on iOS 5

Figure 5 summarizes the overall steps to reproduce YOLO model from
scratch.

Pretrain Remove classifier > Add detector
classifier layers layers
\
Train detector L DD asEm
detector loss

Fig. 5. Project structure

3 Classifier

00 CJopoooo

Fig. 6. Dataset images example with augmentation

Three-channel RGB images are used as the input to the convolutional neural
network. We expect that background of images are homogeneous. For training
and test we used a public dataset accessible on GitHub [14]. This dataset con-
tains 7022 images belonging to 8 classes. (see Figure 6) Every image has already
been organized into directories expected by Keras ImageDataGenerator class.
This class generates batches flow of tensor image data with real-time data aug-
mentation from directory. The only requirement is sub-directories containing
images per class. The major advantages of using ImageDataGenerator are real-
time random data augmentation, up- or downsample of images and low memory
consumption during training due to one batch in memory at once. [15]



OO0 o0oooooao

o o g
O o o

6 Nataliya Didukh and Ihor Zhvanko

Fig. 7. Data distribution by coins

All data classes are almost equally distributed in raw dataset. (see Figure 7).
When splitting up on train and validation dataset it’s strongly recommended
to preserve distribution inside each data class. [16] While doing test/validation
split we took into account this distribution (see Figure 8).

Fig. 8. Data distribution in train and test dataset

All training and test data are passed through augmentation pipeline to in-
crease the overall amount of images. Data augmentation is a remedy for overfit-
ting problem and surpass model generalization skill. [17] The pipeline includes
random width/height shift, brightness change and zooming in/out. At the end
of pipeline the image is normalized in every channel in range from -1 to 1. (see
Listing 1)

0 o v
000000 000000 O bOooo O boo

000000000000000 O DOoooboobooobooboooo
000000000000000000000 0o0000Oooooo0booboa00Oa
0000000000000B00 DO000 000000000000C00000b00000000
0000000000000000000000000000000000000a0
000000000000000000000000000000000000000
000000000000000000000 000000000000000000000000 000000000000
00000000000000000 DobOboo0ob000boo0oo0onon0Oa
0000000000000000000000 bo000ooboooo

Listing 1: Data augmentation configuration



RT coins detection with ML based approach on iOS 7
Uid oooo

The invention of deep convolutional network has lead to a great breakthrough
in image classification task. [18] The building block of modern classification
models are convolutional layers that take into account local patterns in image.
The essence of training of a such network is to find the set of filters that generate
a feature maps that are passed to next filter set. The stacked convolutional layers
naturally integrate low/mid /high-level features and classifiers at the end use this
information to do a prediction. [19]

With a deep of network arise new problems: vanishing/exploding gradient
that slows down convergence or leads to divergence of the model from the be-
ginning; overfitting that affects poor generalization capability. To prevent a po-
tential issues we used:

— DODO00I0D0 OoDDOoD O000. ReLU is an activation function defined as a posi-
tive part or it’s argument f(X) = max(0;x). The major advantage is better
gradient propagation, faster and effective training in deep neural networks
architectures. [20] In our project we used modified version of this function -
leaky ReLU:

X x>0
0:01x otherwise

f(x) = {

— [J00000 1000000000000 D00 00000000000, He initialization introduced by Ku-
mar in paper is proven mathematically to converge faster and helps to avoid
exploding gradient at the beginning. [21] In our project we also used 12-
regularizer to penalize higher weight terms during the training process. This
technique also helps with exploding gradient problem in a way the weights at
the beginning will not grow so fast. [22]

— D0O00000I00. Image augmentation and batch normalization prevent model
overfitting and help model to improve generalization capability. [17] In addi-
tion batch normalization eliminates the need for Dropout, because it acts as
a regularizer. [23]

Researching the history of best classification models from LeNet-5, AlexNet,
VGG-16, VGG-19 is clear that with going deeper accuracy gets saturated (which
might be unsurprising). All subsequent attempts have shown that with scaling in
deep the model unexpectedly starts rapidly to degrade. The degradation prob-
lem was solved by ResNet architecture. The paper introduces the idea of identity
layers and shortcut connections. The main idea of ResNet is to bypass a signal
from one layer to the next via shortcut connections. [24] The “highway” from
previous layers approach was used by another less popular architecture Frac-
talNet. The main key characteristic is that they create short paths from early
layers to later layers to guarantee better information flow.

In this project, we decided to use DenseNet architecture that makes use of a
simple connectivity pattern to ensure maximum information flow between lay-
ers in the network. Every dense block is a set of subsequent layers. Each layer



8 Nataliya Didukh and Ihor Zhvanko

provides it’s feature maps as input to all subsequent layers through concatena-
tion. As described in paper this kind of networks can achieve the same accuracy
with less parameters, and that’s the most important property for system with
constrained amount of computational power. The efficiency of a such setup are
explained by authors as principle of “collective knowledge”, because each layer
has access to all the preceding feature-maps. [25]

Fig. 9. DenseNet architecture

DenseNet has several hyperparameters that defines the deepness, wideness of
the network and compression rate for bottleneck layers. Changing this hyperpa-
rameters influence network parameters, accuracy, precision and recall. Without
getting into details we list this hyperparameters and values we used in experi-
ments.

— [O00000 0000. If each layer produces K feature-maps, it follows that the sub-
sequent layers have kg +k (I 1) input feature-maps, where K is the number
of channels fed in the initial layer and | layer index beginning from 0. For
experiments we used K = 16; 24; 32; 48.

— O0O000O00. Paper introduce several architectures with the same amount of
Dense Blocks, but different repetitions inside the block: 6-12-24-16, 6-12-32-
32, 6-12-48-32, 6-12-64-32, thereby the network grow in deepness. We experi-
mented with fixed growth rate k = 24 and different setup: 3-6-16-16, 6-12-32-
32, 6-12-48-32, 6-12-64-48, but results weren’t included in paper.

— JOO0O0000000 0000. DenseNet uses so called Bottleneck Layers. Bottleneck
layer is a 1x1 convolution introduced to reduce the number of input feature-
maps. Authors put this layer right before every 3 3 convolutional layers. The
parameter is denoted as  and is equal to 0:5 in paper. The same values is
used in our experiments.

For training all our models we used initial learning rate 0:01 and categorical
crossentropy loss function. For reducing learning rate when model validation
loss does not improve we add scheduler that reduces the learning rate after 7
epochs. If model does not improve after 15 epochs we stop training process. (see
Listing 2)



0O o oo oo

RT coins detection with ML based approach on iOS 9

] 0000 O 00 000 Doooo
000000000000 O DO00O00O00O00O000000000R00000000000000 0000000000 00000000000000000000
0 000000 00Ooooooo 0ooo Dooo DOo0 0000000 0oobooo bOoooo 0 0ooooo

000000000 O DOCODO0O0CoCO00bOo0ob0b0b0b00b0boboo0 boboboorobo 0boooooonoD 0ooCobonoboo 0ooboooooo

0 0000 0000o 00 0o00o 0oooooC 00oooo0 ooboo O ooocoo

0000000000000 O 000000C00000000000000000000000000 0o0bO00b00bo0 DOooooooooo Coobo00Coo0000CoooooCooooa

Listing 2: Keras callback used in training process

000 0000000000t bo0 Dooooto

As was mentioned in previous section DenseNet has several parameters, and
we tried empirically understand what are the best parameters for our model.
We present our experiments with changing growth rate and use DenseNet with
repetitions: 6-12-32-32. All metrics we used are very detailed described in [26].

At first we plot confusion matrix to get more visual information where the
model mix up the classes. By definition the columns are predicted classes and
rows - actual classes. If model has a good classification skill then the diagonal
values get saturated.

Fig. 10. Confusion matrix for k = 16; 24; 32; 48

As expected the most critical groups are 1,2,5 cents and 10,20,50 cents due
to great similarity of given coins. In Figure 10 every model has quite noticeable
complications with distinguishing 1, 2 cent and 10, 20 cent coins. Our assumption
about a such massive confusion is similarity in color and size. We suggest to



10 Nataliya Didukh and Ihor Zhvanko

make image augmentation in HSV or HSL color space to force model learn more
structures. This is assumption is based on fact that the smallest and the biggest
models have the same behaviour in critical groups.

Also the interesting observation is that low confusions between 1, 2 and 5
cents so as between 10,20 and 50 cent. We assume that both coins 5 and 50 cent
inscriptions have noticeable bigger size relative to coin radius.

Basically from initial view on confusion matrix all models classify quite good,
and third model with kK = 32 has shown the best result in critical groups.

To get better feel about overall model performance we also provide accuracy,
precision, recall and F1-score for each model and highlight the best scores. F1-
Score is a harmonic mean between precision and recall. (see Tables 1, 2, 3, 4).

Growth Rate Params Accuracy
16 3.6M 74.22%
24 7.9M 74.8%

32 14M 78.71%
48 31.3M 75.2%

Table 1. Model performance in terms of accuracy

Growth Rate lc 2c 5c 10c 20c 50c le 2e

16 0.86 0.30 0.90 0.48 0.57 0.83 1.00 0.97
24 0.84 0.42 0.94 0.31 0.49 0.83 1.00 0.98
32 0.89 0.57 0.90 0.30 0.63 0.83 1.00 0.98
48 0.89 0.38 0.90 0.35 0.64 0.83 0.99 0.97

Table 2. Model precision per class for different growth rate

Growth Rate lc 2c 5c 10c 20c 50c le 2e

16 0.57 0.67 0.95 0.50 0.49 0.99 0.95 0.99
24 0.62 0.67 0.98 0.36 0.38 0.99 0.99 0.99
32 0.66 0.76 0.99 0.39 0.47 0.99 0.98 1.00
48 0.64 0.66 0.97 0.46 0.46 0.97 0.97 0.94

Table 3. Model recall per class for different growth rate






	Real-time coins detection with ML based approach on iOS device
	Nataliya Didukh, Ihor Zhvanko

