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Kurzzusammenfassung

Ein Circuit Breaker Pattern ist ein Software Entwurfsmuster, das dafür verwendet
wird, Fehler in einem System zu erkennen und dessen Ausbreitung zu verhindern.
Ziel dieser Arbeit ist es, das Circuit Breaker Pattern in C ++ zu implementieren.
In dieser Arbeit wird eine detaillierte Analyse des Circuit Breakers durchgeführt,
indem die Architektur, das Klassendiagramm und das Sequenzdiagramm des
Circuit Breakers definiert und erstellt werden. Komponente wie Thread Pool,
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Abstract

A circuit breaker is software design pattern which safely connects different parts
of the system so that failures do not spread uncontrollably across them.It helps to
detect failures and prevent the propagation of failures across the whole system.
The aim of this work is to implement the circuit breaker pattern in C++.
In this work, a detailed analysis of the circuit breaker is performed by defining
and creating the architecture, class diagram and sequence diagram of the circuit
breaker. Components such as Thread Pool, Thread Safe Queue and Command
Wrapper are implemented to ensure the functionality of the circuit breaker devel-
oped here.
Boost Unit Test Framework is used to test the circuit breaker.
To evaluate the implemented circuit breaker experiments are run. They consist of
running a simulation and observing the circuit breaker behavior. To consolidate
the observation made on the simulation, a second test is run where real request
are sent to website.
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1 Introduction

Reactive is a set of design principles, a way of thinking about system architecture
and design in a distributed environment where implementation techniques, tooling
and design patterns are components of a larger whole system. A reactive system
is an architectural style where every component of that system comes together to
offer a service while being individually able to react to its surrounding. Reactive
Systems are based on four important principles1:

Figure 1.1: Reactive System, from Reactive Manifesto

1The Reactive Manifesto. The Reactive Manifesto. 2014. url: https : / / www .
reactivemanifesto.org.
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1 Introduction

1.1 Reactive system properties

As seen in the Fig 1.1, the foundation of reactive system are responsiveness, elas-
ticity, resilience and message driven. Let see what these properties mean.

1.1.1 Responsive

The dictionary describes the word responsive as : “reacting quickly and posi-
tively. a flexible service that is responsive to changing social patterns synonyms:
quick to react” A reactive system needs to react as quickly as possible. Respon-
siveness makes a system usable. It allows a system to detect problems in a timely
manner. Responsiveness is more about how the system is reacting to users when
it is used.

1.1.2 Elastic

The dictionary describes elastic as : “able to encompass much variety and change;
flexible and adaptable.” The system remains responsive when the workload is
varying. Under heavy load, reactive systems must adjust the resources used in
order to stay responsive. Elasticity is more about how the system is reacting to
changing load.

1.1.3 Message driven

In a reactive system, the communication among components is based on asyn-
chronous message passing. Asynchronous message ensures loose coupling between
the components of a reactive system. It ensures also error delegation, isolation and
location transparency. Message driven is more about how the system is reacting
to events.

2



1 Introduction

1.1.4 Resilient

The dictionary defines resilient as : “(of a substance or object) able to recoil or
spring back into shape after bending, stretching, or being compressed.” A
resilient system should stay responsive after a failure. Resilience is achieved by
replication, isolation and delegation and containment. Resilience is about how the
system is reacting to failures that is happening in the system. The circuit breaker
pattern belongs to this category.

1.2 Motivation

The circuit breaker pattern belongs to the fault tolerance and replication patterns,
which are concerned about resiliency and help the developer to build a resilient
system. The circuit breaker pattern allows the developer to monitor the Service’s
health and prevent the failures of the Service to cascade across the whole system.
It can prevent a client from using a defective Service until this one is fixed.
There are already some implementation of this pattern in programming languages
like Java, Ruby, Python, Scala, C#. It was not possible to find a C++ implemen-
tation of this pattern2. A reason might be that at the time the circuit breaker pat-
tern became known to some developers, the C++ standard (C++98 and C++03)
didn’t provide tools to assist the developer in implementing this pattern. C++11
brought the basics tools needed to implement this pattern and C++17 brought a
lot more facilities.
The circuit breaker could be used in the field of embedded systems where we see
the arrival of technology such as Internet of Things. Today, we have more and
more powerful embedded platforms such as Raspeberry PI and Beaglebone that
can support heavy workloads.
The aim of this work is to provide a C++ implementation of the circuit breaker
pattern.

2https://github.com/search?q=circuit+breaker
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2 Circuit Breaker

In this part a detailed analysis of the circuit breaker is presented. This analysis
aims to define the circuit breaker architecture. These steps are necessary since no
formal documentation describing the design and architecture of this pattern could
be found.

2.1 Context

Decoupling two or more Components which need to communicate together.

2.2 Problem

In this work we will consider a system environment where two components are
communicating together. The first component is using the service offered by the
second component. The first component will be called Client second component
will be called Service.

In this context, making a call to the Service can fail. There are many reasons for
those failures to occur such as slow networks, remote resources being temporarily
unavailable or just some timeouts. Those kind of failures can be fixed by themselves
after a short period of time. In some situations faults might take longer to be fixed
which can lead to a complete failure of the Service. When the Service is down,
every request will fail. In this case, trying to use the Service could lead to a waste

4



2 Circuit Breaker

of resources such as thread, memory. Every sent request should fail immediately
so that the caller handles the failure and continues working.

When the Service is busy by processing a submitted request, it will not be able to
process a new request. When processing the request, the service will need some
time to complete the request. It might take longer as the usual latency(see image
A in Figure 2.1). The client then has to wait until it gets the reply back from the
service.

Figure 2.1: A client send a request to the service

How long should the client wait ? One approach would be to set a deadline
during which a reply will be required and assume the service has failed in case
the caller doesn’t receive any answer in this deadline (see image B in Figure 2.1).
The problem with this approach is that we now have the caller blocked until the
deadline is reached just to know at the end that the Service has failed. What if
there are many Service which depend on the caller and they are also blocked ? We
are wasting resources such as threads, database for example. One solution , and
the one that will be implemented in this work is the Circuit Breaker Pattern.

5



2 Circuit Breaker

2.3 Solution

The circuit breaker pattern was first mentioned by Michael T. Nygard in his book
Release It ![3]. Other author such as Roland Kuhn, Brian Hanafee and Jamie
Allen have written description of the pattern in their book Reactive Design
Patterns[10]. The job of the circuit breaker is to prevent a component from
calling a Service that is likely to fail. It does it by wrapping requests to the service.
When the service is unreachable the circuit breaker creates a failure response and
sends it back to the client. The circuit breaker works in 3 different states as shown
in Figure 2.2.

Figure 2.2: Circuit Breaker FSM, from Release It ! by Michael T. Nygard, 1st
edition, p.116 [3]

Closed state In closed state the circuit breaker lets the client’s request go to
the service. By a successful reply nothing special happens. By failure the circuit
breaker updates the number of failures1. When this number of failure reaches a
threshold the circuit breaker trips and changes it state to Open state.

Open state When the circuit breaker is in the Open state, every request sent
to the service fail immediately, without letting the request go to the service. After

1this parameter will be called failure threshold in this work.
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2 Circuit Breaker

spending a defined time limit2 the circuit breaker changes it state to Half-Open.
It does it because the service might have become available in the meantime.

Half-Open In Half-Open state, the circuit breaker let only one request go through
the service and see if the request succeed. On success the circuit breaker changes
it state to the Closed state. The circuit resets. On fail the circuit breaker changes
it state back to Open state. The circuit trips.

Figure 2.3 shows an example of a client sending request through the circuit breaker
In this figure, by the first call the circuit breaker is closed and everything works
fine. Then after successive calls the circuit breaker trips and opens. In this case
the circuit fails immediately. This operation takes 10ms instead of 1000ms. After
a timeout the circuit breaker changes it state to Half-Open. Now the client sends
a request and the circuit breaker let it go to the service. The request succeed and
the circuit breaker changes it state to Closed state.

Figure 2.3: A client uses a circuit breaker to send requests to a service

2this parameter will be called retry time in this work.

7



2 Circuit Breaker

The circuit breaker pattern is used on different platform like :

• Apache Common3 has implemented this pattern for the Java language.
Apache Common provides the following three components :

1. EventCountCircuitbreaker ( concrete class )

2. ThresholdCircuitbreaker ( concrete class )

3. AbstractCircuitbreaker( A based class to used if you want to implement
your own circuit breaker).

• Spring Cloud provides Netflix/Hystrix4 though this code is no more in
active development.

Hystrix is used for example by Netflix and Ebay and is the most known circuit
breaker implementation in Java.

2.4 Design Requirements

The circuit breaker pattern allows us to decouple two Components which need to
communicate together.

2.4.1 Functional requirements

The circuit breaker pattern is mostly driven by its non-functional requirements
rather than by the functional requirements. We will concentrate ourselves on the
non-functional requirements of this pattern.

3https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/
lang3/concurrent/CircuitBreaker.html

4https://github.com/Netflix/Hystrix/
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2 Circuit Breaker

2.4.2 Non-Functional Requirements

To decouple two components which need to communicate together and prevents
failure to cascade across the whole system, the circuit must fulfill the following
non-function requirements:

• The Service invocation call must be decoupled from the service execution.

• The circuit must be able to work with any type of service.

• When the failure threshold is reached the circuit breaker must become open.

• When open, the circuit breaker should transition to the half open state after
delay defined by the client.

• The circuit breaker must fail fast when it is in open state.

• The circuit breaker must provide a mechanism to detect failures.

• It must be possible to monitor the circuit breaker activity.

• The client doesn’t have to block after submitting a request to circuit breaker.

2.5 Design Analysis

This section describes the steps that must be taken in order to implement the
circuit breaker pattern. All the steps described here are the results of this thesis.

2.5.1 Component decoupling

Decoupling method invocation from method execution makes the system asyn-
chronous. This will make the system responsive. The client will be able to continue
its work and use the result of its request when it needs it. We need a component
which allows us to execute the service in a dedicated thread. Since C++ 11, the
STL provides a tools named std::async() to achieve it.

9



2 Circuit Breaker

The problem with std::async is that the standard is not clear about how many
threads are created on successive call of std::async. On my system, repeatedly
calling std::async with launch policy argument set to std::launch::async, most
of the time only one new thread is created and the successive call are run on this
same thread, but there were some case in this experiment where successive call
on std::async created many different thread. A possible solution is to implement
the Active Object pattern5. The Active Object pattern allows us to decouple
method invocation from execution. The problem with this pattern is that it uses
only one thread, which doesn’t scale well when the number of request grows. A
better solution is to implement the Thread Pool Pattern. The Thread pool pat-
tern allows us to decouple method invocation from execution. The circuit breaker
will push the request in the thread pool’s task queue and the new task will be run
in a free thread. The consequence is that the circuit breaker handles concurrent
requests very well. When the time needed to process the request is very short
and there are not many of them, using only one thread will be needed. However
if processing the request needs much more time and if there is a big number of
requests, using only one thread will result in failures of most of all submitted re-
quests. The problem is that requests are queued in a task queue and are processed
sequentially in FIFO order. Newly submitted requests will have to wait for the
old requests to be served first which make it impossible to hold on the deadline.
Using more threads improve the overall circuit breaker performance, hence the use
of the Thread Pool pattern.

2.5.2 Accepting any task type

The circuit breaker must be able to work with any task type. This allows the client
to have different circuit breakers for different services. Being undependable of the
task makes the circuit breaker code reusable, which is is huge benefit. C++ 17

5Douglas Schmidt et al. “Concurrency Patterns”. In: Pattern-Oriented Software Architecture,
Patterns for Concurrent and Networked Objects, Volume 2. 1st ed. John Wiley & Sons, 2000,
pp. 318–342. isbn: 0471606952.

10



2 Circuit Breaker

allows us to achieve that with the use of templates and type traits6. The benefit
we gain from this is that the circuit breaker presents only one public interface that
the client can use to submit its request. C++ 17 is required because since C++
17 class type deduction is now possible. Before C++ 17 template type deduction
was only possible in template functions.

2.5.3 State transition

A state machine is used to manage the circuit breaker states. Based on the current
circuit breaker state the right action will be taken. The state machine works as
described in section 2.3. This state machine allows the circuit breaker to fail
immediately when the open state is active. This requirement will prevent the
client from waiting when the circuit breaker is open. The state machine will also
transition from the open state to the half open state the time spent in open state
has reached a limit set by the user..

2.5.4 Failure detection

When the client has submitted a request, the circuit breaker should be able to
notify the client that the request has failed no matter what the reason is. With
C++ it is possible to store exception in a std::future. Since the circuit breaker
returns a std::future, by failure the circuit will store an exception describing the
error in the std::future.

2.5.5 Monitoring the circuit breaker

Monitoring the circuit breaker will make it possible to see how well the service
is behaving. it makes it possible to see how often the service is failing and take
action when needed. To enable monitoring the circuit breaker must provide an

6C++ 17 provides a header <type_traits> which contains many utilities template to use such
as std::invoke_result_t, std::decay_t

11



2 Circuit Breaker

interface to query the number of submitted requests, the number of failures, the
number of successful requests, the number of time the circuit breaker has been
in the open state which is the number of time the failure threshold has been
reached. The circuit breaker has three parameters that influence its behavior and
thus influences the monitoring attribute. These parameters are deadline, failure
threshold and retry time.

Deadline

This parameter describes how long the circuit breaker will wait for the result. The
value of this parameter has a big impact on the circuit breaker behavior.

Retry time

In the open state, the circuit will wait for some time before it transits from open
to the half-open state. This value value defines how long the circuit breaker stays
in the open state before checking the service status.

Failure threshold

This value defines how often the service could fail before the circuit transits from
the closed to the open state. There is no proper rule to find the best value. It
depends on the context the circuit breaker will be used in. Financial institutes,
production company will definitively not allow a big value. In some cases setting
this value to 3 might be to high.

2.5.6 Non blocking Client

The client doesn’t have to block after submitting a request. C++ 17 has std::future
which allow us to achieve this. The circuit breaker returns a std::future when

12



2 Circuit Breaker

submitting a request. With std::future the client can continue working and fetch
the result stored in the std::future when needed. By non blocking client the circuit
breaker allows the system to be asynchronous.

The analysis of the requirements leads to the system shown in Figure 2.4. This
architecture can be resumed as a client - server architecture where the part con-
taining the circuit breaker represents the server.

Figure 2.4: Architecture of the Circuit breaker pattern

13



2 Circuit Breaker

2.6 Pattern structure

This section describes the structure of the circuit breaker pattern.

Circuit Breaker : The circuit breaker is the interface between the client and the
service. To prevent the client from blocking infinitely, the circuit breaker places the
request in a thread pool’s task queue which will then be run by a worker thread.
The circuit breaker then waits for the results for a time defined by the deadline.
Passed this deadline the result is handled back to the client. The circuit breaker
also provides information to monitor the service.

Figure 2.5: Pattern structure : Circuit Breaker

Thread Pool : The thread pool allows concurrency in the system. It avoids the
thread creation and destruction overhead when new requests are submitted. In
the context of the circuit breaker, it allows the circuit breaker to accept concur-
rent requests by decoupling method invocation from method execution. For every

14



2 Circuit Breaker

accepted request by the circuit breaker, a task is pushed into the task queue and
is processed by a worker thread.

Figure 2.6: Pattern structure : Thread Pool

Client : To call the service the client sends requests to the circuit breaker, which
depending on it state, forwards the request to the service by pushing the task into
the thread pool. When the result or an exception was returned by the service, the
client receives the response from the circuit breaker.

15



2 Circuit Breaker

Figure 2.7: Pattern structure : Client

Service : The service is the component that processes the request submitted
by the client. On new request the service is executed by the thread pool. When
something happened the service throws an exception to inform the client and the
circuit breaker about the failures.

Figure 2.8: Pattern structure : Service

Observers Observers are optional participants which get notified when an event
occurred. The circuit breaker chooses the events it can send notifications and
interested observers register themselves by the circuit breaker to get notified when
these events occur. These observers could be monitors, supervisors other any other
components.

16



2 Circuit Breaker

Figure 2.9: Pattern structure : Observers

The analysis of the requirements listed above and the pattern structure described
lead to the class diagram shown in Figure 2.10. This diagram shows the structure
of the circuit breaker which has been implemented.

Figure 2.10: A Circuit Breaker Class diagram

2.6.1 Sequence Diagrams

This section describes the relevant scenarios when using the circuit breaker pattern.
As mentioned previously in section 2.3, the circuit breaker has three states and
only one of them is active at a time.
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Scenario I : Close state

In the scenario described in Figure 2.11. The client sends a request to the circuit
breaker. The circuit breaker accepts the request and submits it to the thread pool.
The thread pool creates a new task and pushes this task in its task queue. The
task will then be concurrently run in a worker thread. The thread pool updates
its local attributes and return a future object back to the circuit breaker. The
returned future is then checked by the circuit breaker to detect failure or success.
In case of failure, the circuit breaker checks first if the failure threshold is reached.
If the failure threshold is reached the circuit breaker changes it state to the open
state. The client regains control and returns the result.

Figure 2.11: Sequence diagram : Circuit Breaker operating in closed state

18



2 Circuit Breaker

Scenario II : Open State

In this scenario in Figure 2.12 the client sends a request to the circuit breaker.
The circuit breaker checks if it is already the time to transit to the half open state.
Since the circuit breaker is open, the request is not submitted to the thread pool.
Worker threads continue working in parallel if there are task in the task queue.
The circuit breaker updates it local attributes and on timeout transits from the
open to the half open state. The client regains controls and continue his task.

Figure 2.12: Sequence diagram : Circuit Breaker operating in open state

Scenario III : Half Open State

In the scenario described in Figure 2.13 The client sends a request to the circuit
breaker. The circuit breaker accepts the request and submits it to the thread pool.
The thread pool creates a new task and pushes it in its task queue. The task will
then be run in parallel by a worker thread. The thread pool updates its local
attributes and return a future object back to the circuit breaker. The returned
future is then checked by the circuit breaker to detect failure or success. In case
of failure the circuit breaker transits from the half open to the open state. In case
of success the circuit breaker transits from the half open to the closed state.
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Figure 2.13: Sequence diagram : Circuit Breaker operating in half open state
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2.7 Implementation with C++ 17

In the following find how the circuit breaker pattern could be implemented in the
C++ programming language. A Logger module is implemented to allow logging
capability.

2.7.1 Example of how the circuit breaker can be used

Listing 2.1 shows how the circuit breaker class can be used to send a request to the
service. In this example, a Command object is first created and is given a service
that will be used to execute the request. The Command class is a custom wrapper
developed to replace the std::function utility that is provided the C++ standard
library. The Command class is developed to encapsulate a callable object (functor,
function) an make the callable movable. The C++’s std::function is not a good
candidate because it is not movable and this implementation required the task
object to be movable. The Command is to be used in place where a std::function
could be used. A thread pool instance is then created. The thread pool is created
with a number of thread set to WORKERS which is a macro set to 4 by default.
The C++ standard doesn’t provide a thread pool for threads management. For
this reason a thread pool is implemented for this thesis. The circuit breaker
instance is created and the command instance is passed to its constructor. The
DEADLINE, RETRY_TIME and FAILURE_THRESHOLD are macros
defined by default to 50, 70 and 3. The thread pool is passed to the circuit breaker
and it is now ready the operate.

Listing 2.1: Circuit Breaker usage demonstration

1 # include " threadpool .h"
2 # include " circuitbreaker .h"
3 # include <log.h> // < -- Logger library
4 # include <iostream >
5 # include <memory > // <-- Smart pointers
6

7 # define WORKERS 4

21



2 Circuit Breaker

8 # define FAILURE_THRESHOLD 3
9 # define DEADLINE 50

10 # define RETRY_TIME 70
11 using namespace std;
12

13 using duration_ms_t = std :: chrono :: milliseconds ;
14 int job(int a, int b){
15 std :: this_thread :: sleep_for ( duration_ms_t (70);
16 if(b > DEADLINE )
17 throw std :: logic_error ("b is greater than the deadline ");
18 return a + b;
19 }
20

21 int main(int argc , char const *argv [])
22 {
23 Command service {job }; // Command is a movable Functor class

that wraps any callable object .
24 std :: shared_ptr <ThreadPool > pool = std :: make_shared <

ThreadPool >( WORKERS );
25 CircuitBreaker cb(service , duration_ms_t ( DEADLINE ),

duration_ms_t ( RETRY_TIME ),FAILURE_THRESHOLD );
26 cb. setPool (pool);
27 std :: future <int > fut_res ;
28 int res;
29 /*
30 * calling the same service through the circuit breaker
31 */
32 try {
33 fut_res = cb. execute (40, 2);
34 res = fut_res .get ();
35 LOG(" Circuit Usage Request Resutl : ", res);
36 }
37 // The service sleep for 70ms which is longer than the

deadline which is 50ms
38 // so the request a TimeoutError is thrown by the circuit

breaker .
39 catch (std :: exception &e){
40 LOG_ERROR (" Circuit Breaker : service failed with the

error :", e.what ());
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41 }
42 ...
43 // example a calling the service directly without the cicuit

breaker
44 fut_res = pool -> submit (job ,40, 2); // We have to wait until

the result is ready.
45 try{
46 res = fut_res .get ();
47 LOG(" Circuit Usage Request Resutl : ", res);
48 }
49 catch (std :: exception &e){
50 LOG_ERROR (" Service : service failed with the error :", e

.what ());
51 }
52 }

CircuitBreaker::execute() returns a std::future object and this object might store
an exception if an error occurred by the execution of the request. We must enclose
the call to std::future::get() in a try-catch block. The result is logged using a logger
developed for this thesis.

For comparison, on the same Listing 2.1 the same request is directly sent to service
without using the circuit breaker.

2.7.2 Command Class

The implementation of the Command class is shown in Listing 2.2. As already
described above, the Command class is wrapper around a callable object. This
class is needed to make a callable object movable. The Command stores the
callable and delegates the execution to the callable instance when the Command
is called.
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Listing 2.2: Command class: Class

1 template < typename R, typename ... Args >
2 class Command {
3 public :
4 using result_type = std :: decay_t <R>;
5 using function_type = R(*)(Args ...);
6

7 Command ( function_type op) : fn{op}{
8

9 }
10

11 Command (const Command &other){
12 this ->fn = other.fn;
13 }
14

15 Command ( Command && other){
16 this ->fn = other.fn;
17 }
18

19 Command & operator =( const Command & other){
20 this ->fn = other.fn;
21 }
22

23 Command & operator =( Command && other){
24 this ->fn = other.fn;
25 }
26

27 result_type operator ()(Args &&... args){
28 return std :: invoke (std :: forward < function_type >(fn), std

:: forward <Args >( args)...);
29 }
30

31 private :
32 function_type fn;
33

34 };
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2.7.3 Logger Class

The C++ standard library doesn’t provide a logger tools. To avoid external de-
pendency to library like Boost7, a Logger tools is implemented to be able to create
log data. The Logger provides three levels of severity which are DEBUG, ERROR
and WARNING. DEBUG is the default severity level. The Logger can write the
log data to the standard output or to a file. By default the log data is written to
the standard output as seen in the Listing 2.3

Listing 2.3: Logger : log.h

1 # ifndef LOG_H
2 # define LOG_H
3 # include " logger .h"
4

5 #ifdef LOG_TO_FILE
6

7 static Loggin :: Logger < LogFilePolicy > log_instance (" logger .
log");

8

9 # define LOG log_instance .print < Severity_Type :: DEBUG >
10 # define LOG_WARN log_instance .print < Severity_Type :: WARNING >
11 # define LOG_ERROR log_instance .print < Severity_Type :: ERROR >
12

13 #else
14 static Loggin :: Logger < LogConsolPolicy > log_instance ("

Console Logger ");
15 # define LOG log_instance .print < Severity_Type :: DEBUG >
16 # define LOG_WARN log_instance .print < Severity_Type :: WARNING >
17 # define LOG_ERROR log_instance .print < Severity_Type :: ERROR >
18

19 #endif
20

21 #endif // LOG_H

The Logger class is thread safe and can be used concurrently. It is divided into
two classes which are a Logger class that implements the core functionality and

7Boost is a set of libraries for the C++ programming language https://www.boost.org/
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a LogPolicy Class that writes the logs to a defined location. A LogFilePolicy is
provided to write logs data into a file. A LogConsolePolicy is provided to write
logs data into the console. Further details of the implementations of those classes
can be found in the appendix.

2.7.4 Circuit Breaker Class implementation

One requirement derived from the requirements analysis is that the circuit breaker
must accept any task type. To achieve this requirement C++ templates are in-
tensively used.

Listing 2.4: Circuit Breaker : Class template definition

1 template < typename R, typename duration_t , typename ... Args >
2 class CircuitBreaker
3 {
4

5 private :
6 Command <R, Args ...> task;
7 /**
8 * @brief time_to_retry time to wait before transitioning

from OPEN state to HALF_OPEN state
9 */

10 duration_t time_to_retry ;
11 /**
12 * @brief deadline time to wait for the service ’s reply
13 */
14 duration_t deadline ;
15 ... // other attributes
16 public :
17

18 explicit CircuitBreaker (Command <R, Args ...> task , duration_t
deadline , duration_t time_to_retry , int

failure_threshold ):
19 task{task} ,time_to_retry { time_to_retry }, deadline {

deadline }, failure_threshold { failure_threshold }
20 {
21 ... // attribute initialization
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22 state = State :: CLOSED ;
23 ... // other initalizations ...
24 }
25 };

The implementation makes usage of C++ template type deduction to be able to
work with any task signature. In Listing 2.4 the template parameter R captures
the returned type of the task. This parameter will be automatically deduced by the
compiler. The duration_t template parameter captures the type used to store the
deadline attribute which is a std::chrono::duration. The last template parameter
is a parameter pack, which represents a type list. The parameter packs represents
the list of type arguments accepted by the task object. Type deductions are used
by the circuit breaker class members to forward the task parameters and to return
the result back to the caller.

2.7.5 Sending the request to the service

Listing 2.5 shows the state machine is used to determine the action to run. Sending
a request to the service is made through the execute(...) member method. This
method accepts the parameters required by the task object. Depending on the
current circuit breaker state, the parameters are passed the to the method corre-
sponding to the active state. A std::future object is returned back to the caller.
The return type is automatically deduced with the help of the template system.

Listing 2.5: Circuit Breaker : Sending the request to the service

1 std :: future <R> execute (Args &&... args){
2 ++ usage;
3 std :: future <R> res;
4 if(state == State :: CLOSED ){
5 res = onClosedState (std :: forward <Args >( args)...);
6 }
7 else if(state == State :: OPEN){
8 res = onOpenState (std :: forward <Args >( args)...);
9 }

10 else if(state == State :: HALF_OPEN ){
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11 res = onHalfOpenState (std :: forward <Args >( args)...);
12 }
13 updateRatio ();
14 return res ;
15 }

When execute() is called, the request is routed depending on the current state.

2.7.6 sending request on closed state

Listing 2.6 shows the actions taken by the circuit breaker when it receives a request.
The implementation uses the std::future and std::promise to handle the result of
the task. The task is submitted in the thread pool with the arguments needed by
the task. The thread pool returns a std::future which will contain the result when
the task is executed. The cirucit breaker then waits for the result to be ready
in the time limit set by the deadline by calling async_result.wait_for(deadline).
The method wait_for() returns a std::future_status which is an enum type. This
status result is used to detect whether the result is ready or if there is a timeout
meaning that the result was not ready in the deadline defined. Depending on the
status the result is store in the future object through the std::promise variable. In
case of timeout a TimeoutError exception is stored on the future handle to notify
the caller about the failure. When the task has thrown an exception, this exception
is stored in the std::future and the result is handled back to the caller. On failure
monitoring attributes are updated. When the failure threshold is reached, the
circuit breaker trips and makes a transition from the closed state to the open
state.

Listing 2.6: Circuit Breaker : Sending the request to the service on closed state

1 std :: future <R> onClosedState (Args &&... args){
2 std :: promise <R> result_not_ready ;
3

4 std :: future <R> result = result_not_ready . get_future ();
5 std :: future <R> async_result = pool -> submit (task , std ::

forward <Args >( args)...);
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6 std :: future_status status = async_result . wait_for (
deadline );

7 if( status == std :: future_status :: ready){
8 try {
9 result_not_ready . set_value ( async_result .get ());

10 reset ();
11 } catch (const ServiceError &e) {
12 result_not_ready . set_exception (std ::

make_exception_ptr (e));
13 failure_count ();
14 if( getFailure_counter () >= getFailure_threshold

()){
15 ++ failure_threshold_reached ;
16 trip ();
17 }
18 }
19 }
20 else if( status == std :: future_status :: timeout ){
21 result_not_ready . set_exception (std ::

make_exception_ptr ( TimeoutError ()));
22 failure_count ();
23 if( getFailure_counter () >= getFailure_threshold ()){
24 ++ failure_threshold_reached ;
25 trip ();
26 }
27

28 }
29 return result ;
30 }

2.7.7 sending request on open state

On open state the circuit breaker measures the elapsed time since the time it had
changed to open. The elapsed time is compared to the retry time. When the time
passed in the open state is greater than the retry time the circuit breaker makes
a transition from the open state to the half open state. In any case, the circuit
breaker creates a failures responses and handles it back to the caller by storing a
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custom ServiceError exception in a std::future object and returns immediately (
fails fast). The stored exception is used to inform the caller about the failure.

Listing 2.7: Circuit Breaker : Sending the request on open state

1 auto tmp = std :: chrono :: system_clock :: now ();
2 std :: promise <R> error;
3 updateFailures ();
4 auto elapsed_time_duration =std :: chrono :: duration_cast <

duration_t >( tmp - getFailure_time ());
5 if( elapsed_time_duration >= getTime_to_retry ()){
6 transition (State :: HALF_OPEN );
7 }
8 error. set_exception (std :: make_exception_ptr ( ServiceError

(" SYSTEM NOW")));
9 return error. get_future ();

2.7.8 Sending request on half open state

In the half open state, the circuit breaker sends the request to service and sees if
the request succeed. If the service failed the circuit breaker makes a transition from
the half open to the open state. In case of success the circuit updates it monitoring
attributes and makes a transition from the halp open state to the closed state.

Listing 2.8: Circuit Breaker : Sending the request on half-open state

1 std :: future <R> onHalfOpenState (Args &&... args){
2 std :: promise <R> result_not_ready ;
3 std :: future <R> result = result_not_ready . get_future ();
4 std :: future <R> async_result = pool -> submit (task , std ::

forward <Args >( args)...);
5 std :: future_status status = async_result . wait_for (

deadline );
6 if( status == std :: future_status :: ready){
7 try {
8 result_not_ready . set_value ( async_result .get ());
9 reset ();

10 } catch (const ServiceError &e) {
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11 result_not_ready . set_exception (std ::
make_exception_ptr (e));

12 updateFailures ();
13 trip ();
14 }
15 }
16 else if( status == std :: future_status :: timeout ){
17 result_not_ready . set_exception (std ::

make_exception_ptr ( TimeoutError ()));
18 updateFailures ();
19 trip ();
20 }
21 return result ;
22 }

2.7.9 Transition and Monitoring

On state transition, the circuit breaker first checks to see if the new state is different
from the current one. If the new state is different from the old one it changes its
state to the new state.. After changing its state the circuit breaker notifies the
registered observers about the change. Monitors or supervisor can register callable
object which will be executed when the circuit breaker changes whether to the open
or the closed state. This method is executed on the caller thread. The observers
must be short so that they don’t monopolize the processor.

Listing 2.9: Circuit Breaker : Sending the request on half-open state

1 void transition (State state){
2 if(this ->state != state){
3 this ->state = state;
4 if(state == State :: OPEN){
5 std :: for_each ( open_observers .begin (),

open_observers .end (), []( FunctionWrapper &
observer ){

6 observer ();
7 });
8 }else if(state == State :: CLOSED ){
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9 std :: for_each ( closed_observers .begin (),
closed_observers .end (), []( FunctionWrapper &
observer ){

10 observer ();
11 });
12 }
13 }
14 }

One interesting aspect in the code above is the presence of observers. Those
observers are declared in the circuit breaker class as seen in the Listing 2.10 below.
The observers are actually callbacks functions. To be more resilient, a supervisor
(not implemented in this work) is needed to take action in case the circuit breaker
becomes open. An observer could be a function that informs the supervisor about
the situation so that he could start a recovery by replicating the service component.
These observers can be used to supervise the service component depending on the
parameters of interest.
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Listing 2.10: Circuit Breaker : Supervisors

1 template < typename R, typename duration_t , typename ... Args >
2 class CircuitBreaker
3 {
4

5 private :
6 ...
7 /**
8 * @brief closed_observers this is the list of observer (

callback ) to be call when the circuit
9 * becomes closed

10 */
11 std :: vector < FunctionWrapper > closed_observers ;
12 /**
13 * @brief open_observers this is the list of observer (

callback ) to be call when the circuit
14 * becomes open.
15 */
16 std :: vector < FunctionWrapper > open_observers ;
17 /**
18 * @brief listeners this is the list of observer ( callback )

to be call when the circuit
19 * changes it state.
20 */
21 std :: vector < FunctionWrapper > listeners ;
22 ...
23 };

The implementation provides some attribute that could be used to monitor the
service component. Listing 2.11 shows the member attributes that could be used
to monitor the service component performance. The success ratio attribute can
be used to evaluate how the service performs since it creation. A low success ratio
could be an indication that the service component doesn’t work and should be
replaced.
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Listing 2.11: Circuit Breaker : Monitoring variable

1 template < typename R, typename duration_t , typename ... Args >
2 class CircuitBreaker
3 {
4

5 private :
6 ...
7 /**
8 * @brief success_ratio represents the success ratio until

now.
9 * It holds a percentage value

10 */
11 double success_ratio ;
12 /**
13 * @brief ratio_trip this variable reprensent ratio at which

the circuit trips.
14 * It holds a percentage value
15 */
16 double ratio_trip ;
17 /**
18 * @brief failure_threshold_reached this variable represents

the number of time
19 * the circuit breaker has tripped .
20 */
21 int failure_threshold_reached ;
22 /**
23 * @brief usage the number of call made through this circuit

breaker instance .
24 * this helps when you want to monitor the circuit breaker
25 */
26 int usage;
27

28 /**
29 * @brief failures total failures count since the programme

started
30 */
31 int failures ;
32

33 /**
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34 * @brief successes number of successfuly calls
35 */
36 int successes ;
37 ...
38 };

There are many Replications Patterns8 which could be applied here to replicate
the service. Those patterns are :

• Active - Passive Replication Pattern

• Active - Active Replication Pattern

• Multiple-Master Replication Pattern

Maybe the reason the service is down is because it is being overloaded. One lis-
tener could inform the supervisor about the situation an so this one could add
more resources (threads, thread pool ...) to handle the incoming flow of requests,
which will make the system elastic. One other observation is that a Rate Lim-
iter9(not implemented in this work) can be used too to prevent a too fast client
for overwhelming the service. This will help the system to stay responsive when
the system is overloaded.

2.7.10 Thread Pool

The thread pool pattern is implemented as the solution to the requirement which
stated that the Service invocation call must be decoupled from the service execu-
tion. To process requests and stay responsive, the circuit breaker uses a thread
pool. The thread pool accepts any type of task. C++ templates are used to be
able to accept any task type and makes the thread pool reusable since it is task
independent. To submit tasks the thread pool has a method submit() which takes

8Roland Kuhn, Brian Hanafee, and Jamie Allen. “Replication Patterns”. In: Reactive Design
Patterns. 1st ed. Manning Publications Co, 2017. Chap. 13, p. 184. isbn: 9781617291807.

9Roland Kuhn, Brian Hanafee, and Jamie Allen. “Fault tolerance and recovery patterns”. In:
Reactive Design Patterns. 1st ed. Manning Publications Co, 2017. Chap. 12, p. 179. isbn:
9781617291807.
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a callable object and the list of accepted parameters for this callable. The signa-
ture of the task is deduced from the task instance. In Listing 2.12 the Callable
template parameter represents the callable object type and ...Args is a template
parameter pack that represents the list of argument , in the order, accepted by
Callable. std::invoke_result_t (from C++ 17) is used to deduce the return type of
the a Callable instance when called with the arguments of the type contains in the
parameter pack ...Args. These information are used to build a std::package_task
that will be run in a Worker Thread. The task is then moved in the task queue.
The move semantic is used to avoid to make a copy which could be expensive in
the case where the Callable is an heavy functor object. std::forward are used for
perfect forwarding. Perfect forwarding allow the Callable instance to receive the
correct type properties. That means, if the Callable is taking a reference as param-
eter then a reference will be forwarded to the task. If it need a const then a const
will be forwarded to the task instance. This improves the overall performance as
it will be seen in the tests. std::future are used so that the caller doesn’t need to
block after a task has been submitted.

Listing 2.12: ThreadPool Class implementation

1 class ThreadPool {
2 private :
3 /**
4 * @brief done flag indicating that a thread should

terminate and quit.
5 */
6 std :: atomic_bool done;
7

8 /**
9 * @brief workers_count current number of available threads

used by this thread pool.
10 */
11 size_t workers_count ;
12 /**
13 * @brief task_queue contains the tasks to be run.
14 */
15 ThreadSafeQueue < FunctionWrapper > task_queue ;
16 /**
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17 * @brief threads list of actual threads in use.
18 */
19 std :: vector <std :: thread > threads ;
20 ...
21

22 public :
23 /**
24 * @brief submit place a new task in the task queue. This

new task will
25 * be processed by a free thread .
26 * When there is no free thread , the task stays in the task

queue until a thread
27 * becomes available to run it.
28 * this threadpool can process any any task with any

signature .
29 */
30 template < typename Callable , typename ... Args ,
31 typename = std :: enable_if_t <std ::

is_move_constructible_v <Callable >>>
32 std :: future <std :: invoke_result_t <std :: decay_t <Callable >,

std :: decay_t <Args >...>>
33 submit ( Callable &&op , Args &&... args){
34 using result_type =std :: invoke_result_t <std :: decay_t <

Callable >, std :: decay_t <Args >... >;
35 std :: packaged_task < result_type ()> task(std :: bind(std ::

forward <Callable >(op), std :: forward <Args >( args)...))
;

36 std :: future < result_type > result (task. get_future ());
37 task_queue .push(std :: move(task));
38 submitted . fetch_add (1, std :: memory_order_relaxed );
39 return result ;
40 }
41 ...

2.7.11 Interrupting the Thread in the Thread Pool

It is possible to interrupt the worker threads. Interrupting a thread will not cancel
the already submitted task. The worker threads will first run all the tasks which
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was submitted until the interrupt request is sent. Listing 2.13 shows how we could
interrupt the threads present in the thread pool. It puts a task in the task queue
which will set the flag done to true. The current thread pool implementation
doesn’t provide a mean to interrupt threads individually.

Listing 2.13: Thread Pool : Thread cancelling

1 class ThreadPool {
2 private :
3 ...
4

5 public :
6 / /**
7 * @brief interrupt interrupts all currently created threads
8 */
9 void interrupt (){

10 std :: for_each ( threads .begin (), threads .end (), [&]( std ::
thread &t){

11 if(t. joinable ()){
12 submit ([&]{
13 done = true;
14 });
15 }
16 });
17 }
18 ...

2.7.12 Thread Safe Queue Class

The Thread Pool class is using a queue to store the submitted tasks. The C++
standard doesn’t provide a thread safe queue. A thread safe queue is implemented
to allow clients to concurrently add tasks into the thread pool. Listing 2.14 shows
the implementation of the thread safe queue used in this thesis. The new C++
move semantic is used to insert or remove elements into the queue.

38



2 Circuit Breaker

Listing 2.14: ThreadSafeQueue Class implementation

1 template <typename T>
2 class ThreadSafeQueue
3 {
4 public :
5 ThreadSafeQueue ()
6 {
7

8 }
9

10 ThreadSafeQueue ( ThreadSafeQueue const & other)
11 {
12 std :: lock_guard <std :: mutex > locker (other. itemMutex );
13 items = other.items;
14 }
15

16 ThreadSafeQueue ( ThreadSafeQueue && other)
17 {
18 std :: lock_guard <std :: mutex > locker (other. itemMutex );
19 items = std :: move(other.items);
20 other.clear ();
21 }
22

23 ThreadSafeQueue & operator =( ThreadSafeQueue && other)
24 {
25 std :: lock(itemMutex , other. itemMutex );
26 std :: lock_guard <std :: mutex > this_lock (itemMutex ,std

:: adopt_lock );
27 std :: lock_guard <std :: mutex > other_lock (other.

itemMutex ,std :: adopt_lock );
28 items = std :: move(other.items);
29 other.clear ();
30 return *this;
31

32 }
33

34 ThreadSafeQueue & operator =( ThreadSafeQueue & other)
35 {
36 std :: lock(itemMutex , other. itemMutex );
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37 std :: lock_guard <std :: mutex > this_lock (itemMutex ,std
:: adopt_lock );

38 std :: lock_guard <std :: mutex > other_lock (other.
itemMutex ,std :: adopt_lock );

39 items = std :: move(other.items);
40 return *this;
41

42 }
43

44 /**
45 * @brief push pushes item into the queue
46 * @param item the element to be pushed into the queue
47 */
48 void push(T item)
49 {
50 std :: lock_guard <std :: mutex > locker ( itemMutex );
51 items.push(std :: move(item));
52 itemCond . notify_one ();
53 }
54

55 /**
56 * @brief wait_and_pop takes the last insert item from

the queue.
57 *
58 * @param item contains the removed element
59 */
60 void wait_and_pop (T& item)
61 {
62 std :: unique_lock <std :: mutex > locker ( itemMutex );
63 itemCond .wait(locker ,[ this ]{ return !items.empty () ;})

;
64 item = std :: move(items.front ());
65 items.pop ();
66 }
67

68 /**
69 * @brief wait_and_pop takes the last insert item from

the queue.
70 * @return handle to the removed element
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71 */
72 std :: shared_ptr <T> wait_and_pop ()
73 {
74 std :: unique_lock <std :: mutex > locker ( itemMutex );
75 itemCond .wait(locker ,[ this ]{ return !items.empty () ;})

;
76 std :: shared_ptr <T> result (std :: make_shared <T> (std

:: move(items.front ())));
77 items.pop ();
78 return result ;
79 }
80

81 /**
82 * @brief try_pop non blocking removing method . this

method try to remove
83 * the last inserted element from the queue.
84 * @param item contains the removed inserted element .
85 * @return true on success . False is returned when the

queue is empty.
86 */
87 bool try_pop (T& item)
88 {
89 std :: lock_guard <std :: mutex > locker ( itemMutex );
90 if(items.empty ())
91 return false;
92 item = std :: move(items.front ());
93 items.pop ();
94 return true;
95 }
96

97 /**
98 * @brief try_pop non blocking removing method . this

method try to remove
99 * the last inserted element from the queue.

100 *
101 * @return handle to the removed element when the queue

is not empty.
102 * returns an invalid pointer when the queue is empty.
103 */
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104 std :: shared_ptr <T> try_pop ()
105 {
106 std :: lock_guard <std :: mutex > locker ( itemMutex );
107 if(items.empty ())
108 return std :: shared_ptr <T >();
109 std :: shared_ptr <T> result (std :: make_shared <T> (std

:: move(items.front ())));
110 items.pop ();
111 return result ;
112 }
113 ...
114 ...
115

116 private :
117 std :: queue <T> items;
118 mutable std :: mutex itemMutex ;
119 std :: condition_variable itemCond ;
120 };

2.8 Conclusion

The C++ 17 standard is used to implement the circuit breaker pattern. The circuit
breaker implemented is task-independent so that it can be reused or extended.
This is made possible with the use of C++ Templates and the new C++ 17 Class
template type deduction. Basic monitoring facilities is implemented. Supervisors
can be registered to be called when the circuit breaker state changes. The current
implementation makes it easy to apply the Replication Patterns by installing a
supervisors to be notified when the circuit is open. The Thread Pool pattern
is implemented to make it possible to decouple method invocation from method
execution.
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3.1 Test Environment

The test will be run using a system with the following specifications :
Operating System : Ubuntu 18.04.1 LTS

Processor : Intel core i7-8550U 1.8GHz-4GHz 8th Generation

RAM : 12 GB

CPU Architecture : 64-bit Architecture

Desktop Environment : GNOME 3.28.2

Compiler : GCC 7.3.0 (Ubuntu 7.3.0-27ubuntu1 18.04)

Programming Language : C++ 17 Standard

Library dependency : libcurl4-openssl-dev 7.58, Boost 1.58++

Build System : CMake 3.13
GCC 7.3.0 is default installed in Ubuntu 18.04 and offers complete C++ 17
support. libcurl is needed to send request to remote web-services.
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3.2 Test Strategy

Two strategies are used to test the circuit breaker pattern implementation.

3.2.1 Simulation

In this strategy the service is put into sleep with randomly chosen delay on every
request. The client sends consecutively a varying number of request in the series
of 1 - 5 - 10 - 100 - 500 - 1000 - 10000 - 1000000. The same series of request is also
sent without using the circuit breaker. A pause of 500ms is made between each
series of requests.

3.2.2 Web service requests

In this strategy instead of a simulation, requests are sent to an independent web
site. The website URL is www.example.com which offers a public API. For this
test only the series of request from 1 to 100 requests will be used since the website
response time degrades itself the more requests are sent. The deadline used for
this test is defined to a value which corresponds to the mean response time after a
group of 30 requests at different time interval. The mean value of this observation
leads to 476ms which is set as the deadline to use in the circuit breaker.

The aims of these tests is to observe the latency of the requests depending on
the value chosen for the three parameters deadline, failure threshold and time to
retry. This will help us to see the impact of those parameters on the circuit breaker
pattern.
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3.3 Test Execution

This chapter describes the steps to follow in order to build and execute the simu-
lation.

3.3.1 How to build the simulation

The build tools to compile the simulation is based around CMake. The simulation
is making use of constant macros which must be defined at compile time. The
constant macros help the simulation code to make a decision on the type of the
simulation and the parameters to pass to the circuit breaker instance.

Parameter passed to the circuit breaker instance

The circuit breaker needs three parameters to be set so that it can start protecting
the service component : deadline, failures threshold and retry time. To set the
deadline, the simulation is using a percent of the maximal processing time needed
by the service component. This time is passed as macro at compile time.

PROCESSING_DURATION=X This value is used in the experiments to select
different values for the deadline. The deadline is set as a percent of this value.
X is an integer value.

FAILURES_THRESHOLD=X This is the value to set the failures threshold the
experiments. X is an integer value.

RETRY_TIME=X This value is used to set the retry time to use for the experi-
ments. X is an integer value.

TIME_UNIT_MS=FLAG This flag is used to select the time unit : milliseconds
or microseconds. The possible values of FLAG are ON and OFF. Setting this
flag to ON will set the time unit to milliseconds. Setting it to OFF will set
the time unit to microseconds. This flag is set to OFF by default.
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Parameter passed to the Thread Pool instance

The circuit breaker uses a thread pool to run submitted requests. You can control
the number of worker threads used in the thread pool by setting the MTHREAD-
ING macro.

MTHREADING=X This value indicates the number of threads to use. X is an
integer.

Parameters that select the type of the simulation

You have the possibility to run a simulation or to send requests to a real website
with the macro USE_REMOTE_SERVICE. If you choose to use remote service,
you can choose the URL to locate the remote web service by setting the URL
macro.

USE_REMOTE_SERVICE=FLAG This flag is used to select the type of the
simulation. The possible values are ON and OFF. Setting this flag to ON will
use send the requests to real web site. You can select URL where the request
will be sent by setting the URL macro. Setting the macro to OFF will send
the requests to the simulation service. When USE_REMOTE_SERVICE is
set to OFF the URL macro is not taken into account.

URL=URL_X The URL macro is used to select the URL of the website to
use when USE_REMOTE_SERVICE=ON. There are 3 different website
to choose from where URL_2 is the most stable and recommended. The
possible values for URL_X are URL_1, URL_2 and URL_3. By default
URL is set to URL_2.
The websites with URL_1 and URL_3 offer an API where you can define the
delay before the website sends a response to your request. You can configure
the response the website should send back. There are the URL_X used the
requests. You can change them to point to another URL.

• URL_1 : http://www.mocky.io/v2/5c405ffe0f00007408e7b3f9/?mocky-
delay=500ms
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• URL_2 : https://example.com

• URL_3 : ttps://reqres.in/api/users

Displaying Debug output

When the circuit breaker instance is destructed, his destructor method can log the
summary usage of this circuit breaker instance. You can control this behavior by
setting the DEBUG_ON macro.

DEBUG_ON=FLAG This macro controls whether or not the circuit breaker in-
stance writes a summary usage through the logger. The possible values are
ON and OFF. Setting this flag to ON will write the summary usage of the
circuit breaker through the logger. Setting this flag to OFF will deactivate
the logging of the summary usage. By default this flag is set to ON.

3.3.2 Compiling the simulation code

Building the code source is made using CMake. We need to pass in the parameters
we have talked about on the previous section. When the experiments is run, the
results are save in a file whose name is defined by most of these flags / macro. The
results are saved in a directory named log. This directory is automatically created
in the build directory where CMake is executed. An example of how the build files
can be generated for an experiments that run a simulation is shown below:

Listing 3.1: CMake command to generate build files for a simulation

1 #From Project root directory :
2 mkdir build
3 cd build
4 cmake -DDEBUG_ON =ON -DMTHREADING =2 -DTIME_UNIT_MS =OFF -

DFAILURES_THRESHOLD =5 -DPROCESSING_DURATION =100 -
DRETRY_TIMEOUT =100 -DUSE_REMOTE_SERVICE =OFF ..

5 make Experiments
6 ./ experiments / Experiments
7 # results are written into experiments /log directory

47



3 Test Execution

Generating Makefile

Running the cmake command from the code listed in Listing 3.1 will generate
a Makefile that can be used by the make program to build the executable. The
output of this command is shown in Figure 3.1.

Figure 3.1: Running CMake to generate build files

Compiling the code

Themake program is used to build the code source by using a Makefile. A Makefile
contains the instructions needed to build the simulation code. Running the cmake
command listed in Listing 3.1 has produced a Makefile in the build directory. The
generated Makefile will be used by make. Running the make command from the
Listing will compile the simulation code, as shown in Figure 3.2.
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Figure 3.2: Running CMake to generate build files

Running the Simulation

The last command from the Listing 3.1 is used to run the simulation.
1 ./ experiments / Experiments

Figure 3.3 shows an example of the output produced when the simulation is run-
ning.
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Figure 3.3: Running the simulation

If you run this code,the values shown here may vary from yours since these depend
on the host machine’s characteristics.

After execution there will be two log files created in the log directory. One file
contains the results of the simulation run with the circuit breaker and the other
file contains the results of the simulation run without the circuit breaker. Figure
3.4 shows an example of the output produced when the simulation has come to
end. File’s information such as name and location are displayed at the end of the
simulation.

Figure 3.4: Results of the simulation

The log file’s name produced is based on the parameters used to run the simu-
lation. In Figure 3.4, the file name Circuitbreaker_5_100_100_us_sim_T2.txt
can be divided into 7 parts. Each part of this name has a meaning. Going from
left to right, here is how the parts are interpreted as <prefix>_<failure thresh-
old>_<retry time>_<maximal processing time>_<time unit>_<simulation
type>_<number of threads used>.txt

prefix The prefix indicated whether the experiment has used the circuit breaker
or not. The other possible value are Circuitbreaker and Service.

failure threshold This indicates the value used for the failure threshold parameter.
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retry time This indicates the value used for the retry time parameter.

maximal processing time This part indicates the value used for the maximal pro-
cessing time.

time unit This part indicates whether the time unit used was microseconds (µs)
or milliseconds (ms).

simulation type This part indicates the type of the simulation that was executed.
There are two possible values : sim indicates that the results was obtained
after running the simulation and web indicates that the results are obtained
after sending requests to real web site.

number of threads used This part indicates the number of threads that was used
in the thread pool. Possible value are TX where X is an integer.

Running the same code many time with unchanged parameters will append the
results in the existing log file that was generated in the first run.

Figure 3.5 shows an example of the contents of the produced log file.

Figure 3.5: Log file contents
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The results contained in these two files are plotted into diagrams. The diagrams are
then compared to analyze the circuit breaker behavior during the test. Different
results are produced by varying theses parameters to observe their impact on the
circuit breaker.
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This part of the document presents the results of the tests run on the circuit
breaker. Observations are made on how the circuit breaker reacts to the different
requests sent.

4.1 Observations

The results here show the impact of the the three main settings under which the
circuit breaker should work once it is created. Those settings are :

• deadline (set to a percent of the PROCESSING_DURATION)

• retry time

• the failure threshold

For the simulation the idea was to test the circuit breaker with a large set of dif-
ferent requests number : [1, 10, 100, 1000, 10000, 100000, 1000000]. The obtained
results has shown that there weren’t any difference in the way the circuit breaker
responded, so the requests was reduced to : [10, 50, 100, 10000] because it took to
long to run 1000000 requests when the time unit is in milliseconds.
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4.2 Simulation

In the simulation we observe how the circuit breaker reacts depending on the
values of the deadline, the failure threshold and the retry time attributes. The
simulations are run successively with :

• failure threshold = 5, retry time = 100ms, deadline varying to [10%, 50%,
100%, 150%, 200%]

• deadline = 100ms, retry time = 100ms, failure threshold to [3,5,10,30]

• failure threshold = 5, deadline = 100ms, retry time varying to [10ms, 50ms,
100ms]

4.2.1 Effect of the deadline

Effect on duration

In this simulation we see that the duration to process all the submitted requests
grows with the deadline. In the scenario where the deadline is too high, the circuit
breaker doesn’t take longer compare to when the service is directly called, see Fig
4.1 where the deadline is above 100%. We see that a higher deadline value (above
100%) has no negative impact on the duration when the service is working properly.
The circuit breaker doesn’t wait longer as expected. A lower duration is not always
an indication that the service is replying timely. Here the Figure shows that the
deadline has a big impact when the service is not responding timely, which is the
expected behavior of the circuit breaker. Another interesting point to observe
is that the request sent through the circuit breaker doesn’t take longer than the
request sent without using the circuit breaker. This is because the implementation
is using the C++ move semantic to forward the task and parameters around which
keeps the call overhead very low.
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Figure 4.1: Duration in function of the deadline

Effect on success ratio

Observing the success ratio in Fig 4.2 shows that setting the deadline to 100%
of the maximum processing time required by the service is largely enough to lead
to best results. The success ratio is defined as the number of successful request
divided by the number of requests sent. Fig 4.2 also shows the success ratio is
strongly impacted by the deadline’s value. This is due to the successive submitted
request which are still in the task queue waiting for a worker thread to run them.
Since the service need more time to process them, the deadline will probably
timeout before they are run by a worker thread. Increasing the number of worker
threads in thread pool will improve this tendency. But since the service is not able
to hold on the deadline, increasing the number of worker threads will be a waste
of resources.
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Figure 4.2: Success ratio in function of the deadline

The same observation is done with the time resolution set in microseconds in Fig
4.3 . We see that the Success ratio behavior is different. It doesn’t decrease with
the number of submitted requests. This is due to the fact that service is processing
the request very fast (in microseconds) in comparison to Fig 4.2 where the time
resolution is in milliseconds
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Figure 4.3: Success ratio in function of the deadline

Effect on trip ratio

Observing the trip ratio in Fig 4.4 shows that a lower deadline a has big impact on
the trip ratio. The trip ratio is the number of time the failure threshold is reached
divided the maximum number of trip.

maxtrip = nrequest

failures threshold
(4.1)

where :

nrequest = number of request
failuresthreshold = number of failures in a row
maxtrip = number of possible trips
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trip ratio = ntrip

maxtrip

(4.2)

where :

ntrip = number of trip
maxtrip = number of possible trips

This information shows how often the circuit breaker becomes open. When there
is a supervisor monitoring the circuit breaker it means it will be called most of the
time the more the service is used.

Figure 4.4: Trip ratio in function of the deadline
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4.2.2 Effect of the failure threshold

We now observe the effect of failure threshold on the circuit. During experiments, it
was observed that the failure threshold has no impact on the circuit breaker when
the deadline is set at 100%. For this reason the observation here is done with
the deadline < 100%. For this test the deadline is set to 75% of the maximum
processing time required by the service.

Effect on duration

Fig 4.5 shows that the time needed to process the submitted requests grows with
bigger failure threshold values. A lower failure threshold means the circuit breaker
will be in open state most of the time when the service is constantly failing and
so it will always fail fast, this is why the duration is shorter when the failure
threshold is lower, as expected. Which failure threshold value should be chosen ?
There is no fixed answer to that question because it depend mostly on the context
in which the circuit breaker will be used. In some factory like a chemical factory
a failure threshold higher than 2 is not conceivable. In some others context like
requesting data from a website, using a failure threshold with bigger value will not
have any big impact. As we see, the failure threshold is import when the service
is constantly failing.
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Figure 4.5: Duration in function of the failure threshold

Effect on success ratio

An another effect to observe is the impact of the failure threshold on the success
ratio. Fig 4.6 shows that the higher the failure threshold the higher the success
ratio. This is explained by the fact that when the failure threshold value is big
the circuit breaker allows more requests to fail in a row without transitioning from
closed to open state. For example in a sequence of 10 consecutive requests, the
two first requests might fail and the height others might succeed. With a failure
threshold in this example set to 2 it will make the circuit breaker trip and the 8
others requests will simply fail fast. With a failure threshold set to 10, the circuit
breaker will not trip after the two first requests and will be able to process the
height others requests.
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Figure 4.6: Success ratio in function of the deadline

Effect on trip ratio

Here we see how often the circuit breaker becomes open. Fig 4.7 confirms the
observation made on the effect of the failure threshold on the success ratio above.
We observe in Fig 4.7 that the failure threshold has a big impact on how often the
circuit breaker is in the open state when the service is not working. The lower the
failure threshold the higher the trip ratio. For example when the failure threshold
is set to 30, the circuit breaker never becomes open. This is explained by the fact
that there must be 30 consecutive failures before the circuit breaker transitions
from closed to the open state.
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Figure 4.7: Trip ratio in function of the failure threshold

4.2.3 Effect of the retry time

In this part we observe the effect of the retry time value on the circuit breaker.
For this observation the failure threshold is fixed at 5, the deadline is fixed at 75%
and the retry time is varying.

Effect on duration

Fig 4.8 shows that the bigger the retry time the lower the duration time needed for
processing the all the sent requests. This is explained by the fact that when the
circuit breaker is open, it stays longer in that state until the retry time elapsed.
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Since the circuit breaker is open is fails fast for every request sent in that period
of time as expected.

Figure 4.8: Duration in function of the retry time

Effect on success ratio

Fig 4.9 shows that the retry time has an impact on the successfully completion of
a submitted request. The higher the retry time the lower the success ratio. This
observation align itself to the circuit breaker’s behavior. A higher retry time means
the circuit breaker stays longer in the open state when this state is active. Every
request sent while the circuit breaker is open will be counted as a failure, which
keeps the success ratio lower. A supervisor, when installed, could dynamically
change this attribute depending on well the service is working. For example when
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the service keeps failing the supervisor could increase or decrease the retry time
depending the context.

Figure 4.9: Success ratio in function of the retry time

Effect on trip ratio

In Fig 4.10 we see that the trip ratio is growing with the value of the retry time.
This behavior is explained by the way the trip ratio is computed.
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Figure 4.10: Trip ratio in function of the retry time

The trip ratio must be observed together with the success ratio to have a better
view of the circuit breaker’s performance. This is because when the circuit breaker
is open, the failures are still counted, and with that the number of trip is still
computed. This is why the trip ratio is growing with the retry time.

4.3 Web service Test

In this part we observe the circuit breaker’s behavior when used with a real website
request. The URL used for this test is https://www.example.com. The failure
threshold is set to 5, the retry time is set to 476ms and the deadline is varying
from 25% to 200% of the maximum response time. To obtain an approximation
of the maximum response time, a series of 30 requests to the website was probed
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and the response delay was measured. The obtained result is 476ms. The network
used for this test is the HAW.1x wireless network.

The observations made for this test is not different from the simulation test. To
avoid repetitions only the deadline observation is analyzed here.

4.3.1 Effect of the deadline

Effect on duration

To no surprise, the result shown on Fig 4.11 aligns itself with the results observed
in section 4.2.1. A lower deadline leads to a lower duration. On the other hand
setting the deadline much higher , 200% of 476ms doesn’t lead to a duration longer
than when the service is called without using the circuit breaker.

66



4 Experimental Results

Figure 4.11: Web service : Duration in function of deadline

Effect on success Ratio

The result we observe in Fig 4.12 is also not different from the tendencies we
have observed previously. Setting the deadline below 100% of 476ms lead to no
successful requests. This is due to the fact that at the time the test was run,
the site always needs around 476ms to reply. To no surprise, setting the deadline
above 100% of 476ms lead to more successes.

Figure 4.12: Web service : Success ratio in function of deadline
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Effect on trip Ratio

Since the website has a response time of around 476ms, for a deadline set far below
476ms every request is failing. On the other hand, with a deadline equal or greater
than 476ms every request succeeds, so the circuit breaker can not trip. This result
align itself to the observation made in the simulation test.

Figure 4.13: Web service : Success ratio in function of deadline

4.4 Conclusion

When the time resolution is in microseconds, choosing a deadline set at 100% of
the maximum processing time required by the service doesn’t lead to results near
90% success whereas it does when working in milliseconds. Because of thread
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context switching and the operating system activities it is not possible for the
service to hold on this strong deadline when the time unit is in microseconds. The
deadline must be set much higher. The tests shows that 150% is good setup for
the deadline for both time units. A big value for the deadline doesn’t negatively
impact the time needed to wait for the results of all submitted requests. The failure
threshold and retry time have impact only when the service is not responding
in the deadline. The test shows that the call overhead caused by the request
going through the circuit breaker has no impact on the performance. In this
circuit breaker implementation, calling the service directly took the same time
as calling the service through the circuit breaker, so no penalties for using this
circuit breaker implementation. The current implementation of this circuit breaker
doesn’t prevent the client from sending requests. When all the worker threads are
busy processing the requests, the new arriving requests will not be processed until
a worker is free. In this case the submitted tasks that are waiting in the queue
will fail if they have a tight deadline. A solution to this problem will be to add
back pressure capability to the Thread Pool.
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The Circuit Breaker pattern, popularized by Michael Nygard in his book, Release
It!, can prevent an application from repeatedly trying to execute an operation
that’s likely to fail. Using the circuit breaker allows us to detect failures in a
system. It also allows us to prevent the failures to spread over the system and
helps to build a resilient system.

Failure threshold, retry time and deadline are use In this work is was observed
that the failures threshold, retry time and deadline have no influences as long as
the service protected by the circuit breaker has no failures. When the service fails,
the retry time helps the circuit breaker to periodically check the service state. In
this case the circuit breaker reduces the processing by failing fast. The failure
threshold limits the number of allowed consecutive failures whereas the deadline
limits the waiting time. The choice of the failure threshold and the retry time is
not aleatory and depends on the context in which the circuit breaker will be used.

The experiments have shown that the call overhead added has no negative impact
on the performance. This implementation is using the new C++ move seman-
tic. The move semantic avoid the copy of the request around. Instead only the
addresses of the data are copied. This mechanism helps to save time. This has
helped to keep the call overhead very low as the experiments have shown.

The Circuit breaker should not be used to collect requests when the service is down
and process it later. Doing so could create a feedback loop, leading the system to
oscillate between unavailable and overloaded.

One advantage of using the circuit breaker is that it makes the system easy to
monitor. Noneteless, to make fully use of the advantages of the circuit breaker it
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is necessary to think about how the system should react in case of failures and how
the information are forwarded. Message Broker such as RabbitMQ and ActiveMQ
can be used to forward messages and help the system stay responsive.
This implementation can be used to implement a full C++ fault tolerant library
for reactive system programming since it build as C++ library. The implemented
circuit breaker can be used as such with any service without changing the code.
This is made possible by using the C++ template system.
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A Appendices

These documents are available in the CD.

• Doxygen Code documentation compressed in a zip file.

• Raw data of all tests performed(.zip)

• The code source of the implemented circuit breaker as an archive file. (.tar.gz)
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ActiveMQ Apache ActiveMQ is a message broker written in Java with JMS,
REST and WebSocket interfaces, however it supports protocols like AMQP,
MQTT, OpenWire and STOMP that can be used by applications in different
languages.

CMake CMake is an open-source, cross-platform family of tools designed to build,
test and package software. CMake is used to control the software compila-
tion process using simple platform and compiler independent configuration
files, and generate native makefiles and workspaces that can be used in the
compiler environment of your choice.

FSM FSM(Finite State Machine), is a mathematical model of computation. It is
an abstract machine that can be in exactly one of a finite number of states at
any given time. The FSM can change from one state to another in response
to some external inputs.

functor In C++ a function object is a class that acts like a function. A functor
is a class that implements the operator(). That means if f is an instance of a
functor we can use f as function by calling f().

make GNU Make is a tool which controls the generation of executable and other
non-source files of a program from the program’s source files. Make gets
its knowledge of how to build your program from a file called the makefile,
which lists each of the non-source files and how to compute it from other
files. When you write a program, you should write a makefile for it, so that
it is possible to use Make to build and install the program.
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Glossar

RabbitMQ RabbitMQ is an open-source message-broker software that originally
implemented the Advanced Message Queuing Protocol and has since been
extended with a plug-in architecture to support Streaming Text Oriented
Messaging Protocol, Message Queuing Telemetry Transport, and other pro-
tocols. Protocols supported by RabbitMQ are AMQP 0-9-1, AMQP 1.0,
STOMP 1.0 through 1.2 and MQTT 3.1.1.

std::async The template function async in C++ runs a function f asynchronously
(potentially in a separate thread which may be part of a thread pool) and
returns a std::future that will eventually hold the result of that function call.

std::future The class template std::future in C++ provides a mechanism to access
the result of asynchronous operations.

STL The STL, Standard Template Library, is a software library for the stan-
dard C++ programming language that influenced many parts of the C++
Standard Library. It provides four components called algorithms, containers,
functions, and iterators.

thread pool A thread pool is a group of worker thread that run task on behalf of
the application.

URL Uniform Resource Locator : URL is a string of characters that identifies a
particular resource.

Worker Thread A worker thread is a thread which runs to execute a background
task.
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