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Abstract
The paper describes the implementation of an Autonomous Mobile Robot able to na-

vigate the environment by combining range and odometry data from LiDAR and wheel
encoders sensors in the Robot Operating System (ROS) framework. The SLAM algo-
rithm uses this sensory information to produce a static map of the environment. This is
then relied upon by the navigation stack of the framework to navigate the environment,
where the sensor data is used to localize the robot in the map and to calculate an opti-
mal trajectory towards a set destination that avoids static and dynamic obstacles. The
system is tested in simulated and real scenarios and the main challenges of mapping
and navigation are surveyed. The different approaches are then discussed with a par-
ticular focus on their robustness, by studying their shortcomings and advantages. This
paper ultimately aims to guide the reader through the steps needed to implement the
described system and outlines the best practices that lead to a sound solution.
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Kurzzusammenfassung

Diese Thesis beschreibt die Programmierung eines Autonomen Mobilen Roboters,
welcher durch Auswertung von Entfernungs und Odometriedaten eines LiDAR sowie
eines Rad-Encoder Sensors einen Pfad frei von mobilen und stationdren Hindernis-
sen berechnet. Der SLAM Algorithmus nutzt die Sensorinformationen um in echtzeit
eine Umgebungskarte zu erstellen, auf welcher die Position des Roboters sowie der
Hindernisse festgehalten werden. Das System ist durch Simulationen sowie reale
Szenarien getestet worden, in welchen die Probleme und Komplikationen in der Navi-
gation und Objekterkennung observiert wurden. Die verschiedenen Lésungsansatze
und deren Vor- sowie Nachteile sind in dieser Thesis in besonderer Hinsicht auf ih-
re Stabilitat gegenlibergestellt. Ziel ist es dem Leser die Schritte zur Implementierung
dieses Roboters aufzuzeigen, sowie die Dokumentation von Herangehensweisen wel-
che die besten Resultate ergeben haben.
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1 Introduction

At a time when robotics is increasingly present in our everyday environment and autonomous
navigation is revolutionizing entire infrastructures, from urban mobility to industrial scenarios,
it is of fundamental importance to gain a deeper understanding on how to implement a ro-
bust robotic system. Although the know-how and the technology to develop such systems
have been the subject of numerous studies and researches, the complexity of the topic so
far required extensive knowledge in fields such as Mechatronics, Electrical Engineering and
Computer Science in order to develop the most rudimentary robot with features not remotely
comparable to those of current systems. Moreover, the prohibitive cost of hardware and
software alike did not allow developers to experiment outside of specifically equipped labo-
ratories, limiting the user base and consequentially the rate of technological innovation.

The availability of robotics software frameworks is increased in recent years and, in a study
highlighting the different characteristics of the most established solutions, ROS (Robot Op-
erating System) proved to be among the open source frameworks with a compelling score
in terms of high-level abstraction of complex routines, documentation and re-usability. [1] Its
extensive pool of features and drivers provides the means necessary to control the numer-
ous actuators and joints of a robot and visualize the data acquired through different types
of sensors. Furthermore, complex algorithms used to interface a robot with its surroundings
have been incorporated in ready-to-use navigation and manipulation stacks. All the while,
configurable simulation tools made it possible to model complex robots and sensors and
mimic their behaviour in ad-hoc created virtual environments to decrease the development
time and cost, before seamlessly switching to the real scenario. [2] This allows users with
a fundamental background in software development to deploy fairly complex systems, even
without having access to expensive hardware.

An Autonomous Mobile Robot (AMR) is a fitting example, as it encompasses a drive system
with multiple independent moving parts and inputs from different sensors. While different
configurations are possible, a combination of LiDAR laser range and odometry data to effec-
tively scan the surrounding environment and accurately localize the robot in it was success-
fully implemented to generate a 2-D map of an indoor environment and achieve autonomous
navigation capabilities. [3][4] Furthermore, visual navigation with the aid of a camera has
been proven effective in reacting to moving obstacles, common in a dynamic scenario, by
accounting for their velocity when calculating the optimal trajectory. [5]
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The core component of the system is however the software that interprets the inputs, creates
a map of the surroundings, estimates the position of the robot and dynamically calculates
the optimal route toward a defined destination. Despite the overwhelming complexity of the
underlying components, by relying on robotic frameworks it is now feasible to implement this
platform in a relatively short amount of time. The implementation and deployment of this
system are therefore the focus of this project, as it is an excellent mean to explore different
tools and methodologies available at the moment of this writing.

This paper outlines the development of an Autonomous Mobile Robot for indoor navigation
using the ROS framework. It also describes best practices for developing the system with
high degrees of robustness, efficiency and scalability, as well as the limitations and draw-
backs of the approaches, while aiming at minimizing developments costs and time. The
chapter Related Work highlights the state of the art of the research in the field, which may
offer the reader some interesting development ideas. A more detailed description of the
project objectives is given in the Requirements chapter, where the milestones to reach them
are listed. Particular care is taken to outline each implementation step in the Hardware and
Software integration chapter, giving a brief introduction on the fundamentals of ROS and de-
tailing some technical aspects where needed, in order to give the reader the insight that could
be helpful when deploying a similar system or extending the functionalities of the described
platform. The Approaches assessment chapter lists different implementation choices, identi-
fies the parameters that have been used for their evaluation and argues on the reasons why
one approach was deemed the most suitable in the scope of the project. The Evaluation
chapter details how the implemented functionalities were evaluated and describes measures
that can be put in place to improve the performance. Moreover, the chapter lists the issues
that remained open and may need to be addressed in further developments. Finally the
Consclusion chapter summarizes the outcomes of the project, which are most relevant to the
robustness of the AMR.



2 Related work

In order to frame the discussion on the current state of the art, it is a good idea to state
the mission of the system, more thoroughly explained in the chapter 3. The robot shall be
able to navigate in a dynamic indoor environment, namely inside the University building. A
LiDAR sensor provides range data on the environment while rotary encoders track angular
velocity of the wheels and provide odometry data. In order for the navigation feature to be
implemented efficiently, a map of the environment shall be built.

In a paper published by M. Késeoglu, O. M. Celik and O. Pektas is explained how an Au-
tonomous Mobile Robot can be implemented. The system integrates a LiDAR, quadrature
encoders, an inertial measurement unit (IMU) and an ultrasonic range finder. The latter is
used in a collision avoidance algorithm, while the IMU is used to increase the reliability of
the odometry data obtained from the encoders. In order to fuse the data obtained from the
quadrature encoder and the IMU, an Extended Kalman Filter is used. Also known as linear
quadratic estimation, it aims to estimate the current state of a system, which in this case
is represented by its position, based on the previous states and current observation. An
accurate estimate of the location of the device helps improving the overall precision in both
mapping and navigation. [3]

In another publication, Q. Xu, J. Zhao, C. Zhang and F. He describe the implementation of
a similar system and offer an insight on two possible mapping algorithms available in ROS.
While both gmapping and hector_slam are mainly used in dealing with the SLAM problem
and rely on laser scan data, the former additionally requires odometry data to locate the
robot in the map. Instead, hector_slam estimates its location based solely on observations
of its surroundings and is proven to be less effective in scenarios with scarcity of landmarks,
like long corridors or large empty spaces. [4]

On the other hand, gmapping is an effective way to tackle the SLAM problem, according to A.
Huletski and D. Kartashov. In their paper the algorithm is explained in depth, arguing that its
prediction-correction loop offers reliable performance in a wide array of scenarios. In each
loop iteration the measurements provided by an interoceptive sensor (e.g. odometry from
wheel encoders) are refined by matching data obtained with an exteroceptive sensor (e.g. a
camera or laser scanner) and already accumulated information about the environment. [6]
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Autonomous navigation is also achievable using visual data from camera sensors and this
approach is outlined by F. Chaumette. The authors state that visual navigation can provide
more robust performance in a dynamic environment with moving obstacles. This is a typical
scenario where the robot operates in a space crowded with people. An image processing
algorithm tracks the obstacles in the field of view of the camera and calculates their speed
and trajectories. The robot computes viable paths or tentacles based on the estimated future
position of the obstacles, evaluates their cost with respect to efficiency and risk of colliding
and travels the one scoring lowest. [5]

Further research in the field of robot-human interaction has been done by A. T. Angonese
and P. F. Ferreira Rosa by implementing a Deep Convolutional Neural Network to be able
to identify different persons based on the image stream of a RGBD camera. An application
relying on people recognition is the so-called follower use-case, where the robot follows a
specific person while keeping a set distance. A further integration with a SLAM algorithm
allows overlaying the informations on the detected persons on the map built with the latter.

[7]



3 Requirements

Two are the main objectives of the Autonomous Mobile Robot identified and described in this
paper. First, it shall be able to produce an accurate static map of an indoor environment.
The measurement error of the dimensions represented in the map, as well as the incorrect
curvature of sections of it is assessed. Section 6.1 outlines the evaluation of the mapping
feature.

Next, the robot shall safely navigate the environment towards a set destination. In order to
achieve this, the robot shall avoid obstacles that were not previously mapped, recalculate a
new feasible trajectory if an obstruction blocks the original path and reach the goal, stopping
within a minimal distance from it. In Section 6.2 these features and their success rates are
evaluated.

In order to progress systematically towards the end goals, several milestones listed in Ta-
ble 3.1 were identified. It is worth noting that it would be feasible to implement the AMR
neglecting the simulation step. This step however offers the possibility of evaluating the be-
haviour of each singular component as well as the soundness of the routines of the robot
more quickly and with less effort than it would require when doing the same in a real sce-
nario, while avoiding any accidental damage to the hardware.

Milestone Description

Development environment The development environment is configured

Sensor integration The LiDAR, wheel encoders and the camera are
configured in the real and simulated robot

Remote controller A device is configured to remotely control the robot

Mapping The robot produces a static map of the real and sim-
ulated environments

Navigation The robot navigates autonomously towards a set
destination in the real and simulated environments

Table 3.1: Requirements - Milestones overview



4 Hardware and Software integration

This chapter outlines the development steps to interface the Pioneer P3-DX and the differ-
ent sensors with ROS and simulate their behaviour in Gazebo, ROS-compatible simulation
engine. First, a brief introduction is given on the fundamentals of ROS in order to ease the
reader in the framework and the vast subject of Autonomous Systems. An IDE is then intro-
duced, which may be used to simplify the development in ROS. Next, from the configuration
of the bare-boned robot, each sensor is subsequently integrated both in the hardware and in
the simulation configuration. Finally, the software subsystem that relies on the integration of
the different components is described. More thorough explanations are given when required
to guide the reader in the implementation of the system without an extensive prior knowl-
edge of ROS. It is however outside the scope of this paper to explain its underlying structure
components, knowledge essential in order to gain a better understanding on the operation
of the framework and for which there is abundant material online. The reader is therefore
encouraged to refer to the official documentation for in-depth information as new concepts
are introduced throughout the development of the system and to the resources listed in the
respective sections.

4.1 Foundations of Autonomous Systems and ROS

This paper is meant to give a reader with little to no experience in Autonomous Systems a
broad overview on how to implement an Autonomous Mobile Robot using ROS. It is therefore
unavoidable to refer to hardware related concepts and components which are specific to the
framework, which may be incomprehensible without a further look into the documentation.
This section gives an overview of these basic concepts in order to improve the readability of
this paper.

The ROS framework operates by initiating independent processes called nodes that, not
unlike threads, execute in parallel and communicate with one another by subscribing to or
publishing data structured in messages at a certain frequency via defined interfaces called
topics in a polling approach. Nodes may also provide so-called services, procedures that
can be requested remotely from other nodes. A defined set of nodes can be executed by
configuring a launch file, without the need to initiate each one manually. The messages
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published on the topics can be recorded in bag files in order to replay the data at later
times.

Different tools are integrated in the ROS framework, most notably the Gazebo simulation
environment and the rviz visualization tool. Gazebo allows to evaluate the performance
of the system in a virtual scenario, drastically reducing development costs and time. rviz
provides the means to graphically visualize output from sensors and is useful to see what
the robot perceives.

SLAM or Simultaneous Localization and Mapping is a technique used to produce a static
map of the environment using input from a variety of sensors. The Navigation Stack on the
other hand encompasses the systems needed to calculate a viable trajectory to a set desti-
nation, such as local and global planners for short and long distance plans respectively.

Robust SLAM and navigation approaches use a combination of range data from a laser
scanner or LiDAR and odometry data from rotary encoders. A 2-D or 3-D LiDAR sensor
emits one or multiple laser beams respectively to probe the distance to the obstacles in
the environment, while the odometry data represents the change in position of the robot
over time and is obtained via rotary encoders tracking the angular velocity of the wheels of
the robot. The same data is used by navigation algorithms as well, which allow the robot
to drive towards a set destination on the map while avoiding static and dynamic obstacles
alike. Listing 4.1 and 4.2 show the message definition for the 2-D and 3-D LiDAR data while
Listing 4.3 represents the odometry data message.

The size of the messages can vary from sensor to sensor, depending on the number of
points probed by the laser scanner for example, while the frequency at which the messages
are published can be set manually according to the need. The rostopic bw command allows
to monitor the bandwidth occupied by a specific topic the data is published to in any given
circumstance.

# # sensor_msgs/LaserScan Raw Message Definition # # #
Single scan from a planar laser range—finder

#

#

#

# |If you have another ranging device with different behavior

# (e.g. a sonar array), please find or create a different message,

# since applications will make fairly laser—specific assumptions

# about this data

Header header # timestamp in the header is the
acquisition time of the first ray in the scan.

the positive Z axis (counterclockwise, if Z is up)

#
#
# in frame frame_id, angles are measured around
#
# with zero angle being forward along the x axis
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float32 angle_min # start angle of the scan [rad]
float32 angle_max # end angle of the scan [rad]
float32 angle_increment # angular distance between measurements [rad]

float32 time_increment # time between measurements [seconds];
# if your scanner is moving, this will be used in interpolating
# position of 3d points

float32 scan_time # time between scans [seconds]

float32 range_min # minimum range value [m]

float32 range_max # maximum range value [m]

float32[] ranges # range data [m]

# (Note: values < range_min or > range_max should be discarded)
float32[] intensities # intensity data [device—specific units].

# |If your device does not provide intensities , please leave
# the array empty.

Listing 4.1: LaserScan - Raw Message Definition

# # # sensor_msgs/PointCloud2 Raw Message Definition # # #

# This message holds a collection of N-dimensional points, which may

# contain additional information such as normals, intensity, etc. The
# point data is stored as a binary blob, its layout described by the

# contents of the "fields" array.

# The point cloud data may be organized 2d (image—like) or 1d

# (unordered). Point clouds organized as 2d images may be produced by

# camera depth sensors such as stereo or time—of—flight.

# Time of sensor data acquisition, and the coordinate frame ID (for 3d
# points).
Header header

# 2D structure of the point cloud. If the cloud is unordered, height is
# 1 and width is the length of the point cloud.

uint32 height

uint32 width

# Describes the channels and their layout in the binary data blob.
PointField[] fields

bool is_bigendian # Is this data bigendian?
uint32 point_step # Length of a point in bytes
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uint32 row_step # Length of a row in bytes
uint8 [] data # Actual point data, size is (row_stepxheight)
bool is_dense # True if there are no invalid points

H H HHH

Listing 4.2: PointCloud2 - Raw Message Definition

# # nav_msgs/Odometry Raw Message Definition # # #

This represents an estimate of a position and velocity in free space.
The pose in this message should be specified in the coordinate frame
given by header.frame_id.

The twist in this message should be specified in the coordinate frame

# given by the child_frame_id

Header header

string child_frame_id
geometry_msgs/PoseWithCovariance pose
geometry_msgs/ TwistWithCovariance twist

Listing 4.3: Odometry - Raw Message Definition

Finally, the following brief glossary can be referred to while progressing through the following
sections of the paper:

LiDAR: Also called laser scanner, it measures distance to obstacles by emitting a laser
beam and measuring the time of flight in which the beam is reflected, before rotating
to scan at different angles.

Odometry: Estimate of changes in position of the robot obtained by tracking the angu-
lar velocity of the wheels with rotary or wheel encoders.

Node: A node is a process that performs computation. Nodes are combined together
into a graph and communicate with one another using streaming topics. A robot control
system will usually comprise of many nodes. For example, one node controls a laser
range-finder, another the robot’s wheels motors, one performs localization, one path
planning, one provides a graphical view of the system and so on.

launch file: Allows to initiate multiple nodes at once and to set and retrieve runtime
parameters.

Message: ROS uses a simplified description language for describing data that nodes
publish or subscribe to. Messages define the data structure and act as data holders
as nodes exchange messages through topics.

Topic: Named channel over which nodes exchange messages. Topics use anony-
mous publish and subscribe semantics. In general, nodes are not aware of who they
are communicating with. Instead, nodes that are interested in data subscribe to the
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4.2

relevant topic, while nodes that generate data publish to the relevant topic. There can
be multiple publishers and subscribers to a topic.

bag files: A bag is a file format in ROS for storing message data. A variety of tools
have been developed to allow storing, processing, analysing, and visualizing recorded
data. Bags are typically created by the rosbag tool, which subscribe to one or more
ROS topics and stores the serialized message data in a file as it is received, which can
be played back at later times.

Gazebo: 3-D simulator environment for ROS. With this tool it is possible to create
a 3-D scenario with robots, obstacles and many other objects. Gazebo also uses a
physical engine for illumination, gravity and inertia. The robot can be tested in difficult
or dangerous scenarios without any harm. In most cases it is faster to run a simulation
instead of performing the test in the real environment.

rviz: A 3-D visualizer for the ROS framework. It is capable of visually representing data
streams from different sensor sources, data from the mapping and navigation stack as
well as robot models described in URDF files.

URDEF: The Universal Robotic Description Format is an XML file format used in ROS
to describe all elements of a robot, including physical and inertial properties and joints
between different robot components (or frames), used to calculate the transform be-
tween different frame coordinate systems.

xacro: XML Macros are the alternative mean to the URDF to describe the elements of
the robot, improving readability and reducing duplication in the robot description files.

gmapping: A SLAM mapping algorithm using Rao-Blackwellized particle filters that
relies on a combination of odometry and LiDAR data.

hector_slam: A SLAM mapping algorithm that relies on LiDAR data and uses a scan
matching technique to perform localization and mapping.

Navigation stack: A set of software components that takes in information from odom-
etry, sensor streams and a destination, sending velocity commands to a mobile base
to reach it. As a pre-requisite to use the navigation stack, the robot must be running
ROS, have a transform (or tf in ROS) tree in place, and publish sensor data using the
correct message types.

Environment setup

The latest LTS Ubuntu distribution at the time of this writing is version 16.04.3 and is the rec-
ommended since it is compatible with ROS Kinetic, also the latest LTS framework distribution.
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It is strongly recommended to install the 64-bit version on the hard drive of a performing ma-
chine with a dedicated GPU or, if another operating system is already installed, in one of its
partitions. This is due to the fact that many tools necessary to simulate and visualize the
data are demanding in terms of computation power. On the other hand, while developing on
a Live USB version of Ubuntu is not recommended due to extreme drops in performance,
installing the system on a virtual machine satisfying the requirements is a viable option.

The distribution of ROS used in the scope of the project is Kinetic Kame, specifically the
Desktop-Full package. The installation process is straightforward and explained in detail
in the official documentation. This would be sufficient in order to start developing with the
framework, by manually navigating through the file-system in order to modify the project
files and running the ROS commands on the console. Developing in an IDE might however
be preferable to speed up the process and help keeping track of projects, regardless of their
complexity. An extended section on the official ROS documentation lists numerous Integrated
Development Environments that work with the framework.

The approach chosen for this project is the use of RoboWare Studio, mostly because of its
straightforward integration with ROS and for the tools it offers. Here is a short list of features
that the IDE provides:

e Code completion

Syntax highlighting

Diagnostic tools integration

C++ and Python debugger
Git built-in

In the following chapters of this paper there will be no further mention of RoboWare Studio,
since the choice of the IDE is a subjective matter and not essential to the actual implemen-
tation of the system. The goal of this small introduction was rather to present the reader with
the possibility of using this particular software to setup a working environment.

4.3 Pioneer P3-DX

The robot of choice for this project is the Pioneer P3-DX from Omron Adept Mobile Robots.
It implements a differential drive system with rotary encoders to track the angular velocity of
the wheels for reliable odometry data and an on-board microcontroller to provide an interface
with the robot components. Additionally, a SONAR system is integrated on the front of the
chassis. Its main advantages are the proven compatibility with ROS and the availability
of numerous resources that accelerate the development on the platform. These include
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ROS drivers, tutorials and URDF (Unified Robot Description Format) models describing the
geometry and joints of the robot.

These are necessary to compute the transforms between the coordinate frames of the robot
components to determine the relative position or pose of these frames with respect to one
another. Figure 4.1 shows graphically the relationships between the different component
frames of the robot and their common base link, described in the URDF model. More in-
formation on this topic is available in the official transform tf package documentation. [8]

camera

back _sonar

top_plate

left_hub
right_it Ib

Cacter_swivel

base link

Figure 4.1: Robot - Pioneer P3-DX transform relations between the components
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4.3.1 Simulation

According to the official MobileRobots ROS package, the latter does not provide working
URDF models for Gazebo. [9] Luckily, ROS Kinetic comes bundled with demo packages
which include the models needed. The complete and accurate instructions are described
in the two-parts guide listed. [10][11] Note that these models work only in the simulation
environment and are not suited for the operation of the actual robot.

4.3.2 Hardware

To deploy the robot in the real environment, the drivers for the microcontroller, the ROS
interface and the robot description URDF files need to be configured. This requires the ARIA
SDK (Advanced Robot Interface for Applications) to be installed and the ROSARIA package
to be put in the workspace, as thoroughly explained in the official ROS documentation. [12]
This package includes the launch files that initiate the communication between ROS and the
on-board microcontroller of the robot.

Next the amr-ros-config package needs to be downloaded and placed in the ROS workspace.
[9] This package includes the official URDF models of the robot, as well as launch files that
start the rviz tool to visualize the model, as shown in Figure 4.1. rviz is ROS graphical tool
that allow to visualize data from a wide range of sensors and is an essential diagnostic tool as
it allows to interpret the robot perception. It may also be used to interact with the navigation
stack to set specific destinations on a map where the robot should travel to.

4.3.3 Odometry calibration

At this point the robot should be configured and it should be possible to control its movements
with ROS. A noteworthy issue is however that of odometry calibration. It may very well be
that, due to different pressure of the tires and load on the chassis, the wheel encoders map
their rotation to the wrong distance travelled, which may degrade the performance of both
mapping and navigation operations. In order to verify whether this is the case, the following
tests need to be performed:

1. Drive the robot forward and verify it keeps following a straight line.
2. Measure the actual distance travelled and compare to the one reported.

3. Rotate the robot in place, measure the angle and compare to the one reported.
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One way to do so is using a teleoperation teleop tool in ROS to command the robot with the
keyboard of the laptop and monitor the odometry data published. Both rqt topic and rviz
tools can help reading and visualizing the data respectively. If during any of the previous
tests an unacceptable error is observed, the odometry is not calibrated and the respective
parameter needs to be adjusted. Following are the Pioneer P3-DX robot-specific parame-
ters:

1. DriftFactor: measures the horizontal error vs. forward motion and is used to correct
the translation and rotation drift; should be adjusted until the robot drives in a straight
line.

2. TicksMM: is the number of encoder ticks per millimeter; should be adjusted until the
travelled distance matches the one reported.

3. RevCount: is the differential number of encoder ticks for a 180-degree rotation of the
robot; should be adjusted until the rotation matches the one reported.

It is recommended to do so dynamically while the robot is operating, using the rqt_reconfigure
tool, to avoid restarting the robot every time a parameter is modified. Once the parameters
have been properly adjusted, it is possible to save them in an appropriate configuration file
that can be then loaded when starting the robot.

The calibration method above relies on visual observations and manual adjustments of the
values until the perceived error is negligible. There are other approaches to perform the
calibration, and a fairly precise one that relies on laser scan readings is explained in the
listed resource. [13]

4.4 LiDAR

Range data is crucial in the implementation of an AMR with mapping and navigation capa-
bilities. In this project, a SICK TiM310 S01 LiDAR is used as it reliably provides this data in
an indoor environment. Its field of view has a 270° horizontal aperture angle with an angular
resolution of 1°, and a maximum range of 4m. Navigation and mapping algorithms rely on
readings from a laser beam oriented parallel to the ground to keep track of the position of
the robot in the map. This however does not allow to detect objects higher or lower than the
emitted laser beam. A solution to overcome this problem is to use a 3-D LiDAR, such as the
Velodyne VLP-16, which emits more beams at different angles at the same time, or mount a
2-D LiDAR on a tilting joint controlled by a servo that adjust the angle. In the scope of this
project, the 2-D laser scanner is placed in front of the chassis and can only detect obstacles
at a height of approximately 15cm.
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Figure 4.2: LiDAR - TiM310 Connection Diagram

source: TiM31X Operating instructions manual

As shown in Figure 4.2, the device is connected via a USB interface to the computer, where
in this case ROS instead of the proprietary software SOPAS is installed, and with a 15-pin
D-sub-HD plug to the supplementary Connection module CDB730-001, to which the power
is supplied. No further detail on the module above is relevant to the scope of this project,
however more on the topic can be found in the listed technical documentation. [14]

The next step is to download the device driver for ROS. The official ROS wiki has a page
dedicated to drivers for a variety of sensors and the package sick tim includes the one for
the SICK TiM310 S01 model as well the URDF models and the files needed to simulate the
sensor in Gazebo. [15] After cloning the repository in a ROS workspace, the instructions to
access the device via the USB interface are provided in the /udev/README file. The package
comes with ROS launch files for each of the supported sensors, which create a ROS node
interfaced with the sensor that publishes LaserScan messages. These contain notably the
array of ranges or distances to the obstacles detected and the respective intensities.

Rviz can be used to visualize a graphical representation the data by adding the LaserScan
display and setting the topic. By adding the RobotDescription display, it is possible to see the
model of the LIiDAR as well. To test the reliability of the data and study the behaviour of the
device, the following test scenario was arranged so that the following elements were located
in the field of vision in front and at the sides of the sensor:

e Square object with one side perpendicular to the beams.
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e Square object with one edge facing the beams.

e Spheric object.

e Plane with an inclination of approx. 30° and a peak height of 7cm.
e Pole with a square base behind the inclined plane.

The simplified setup could be observed in Figure 4.3, where only the meaningful elements
were extracted from the surroundings. The height of the inclined plane was chosen so to test
the behaviour of the device when objects are present in its field of vision which are barely
interrupting the laser beam. Anything below this height is not detected by the sensor. The
rviz graphical representation of the laser scan data is shown in Figure 4.3, where the dark
blue points represent the detections with a high reflection intensity. Figure 4.4 shows the
overlay of the test scenario and the sensor output.

It appears that, in the case of the inclined plane, the sensor noise is moderately higher as the
points are not perfectly aligned and with a low intensity value due to a non-optimal reflection
angle between the laser beam and the plane surface. Moreover, the distortion is greater at
the point where the pole is located behind the plane. The presence of an object behind a
barely detectable one seem to cause this odd behaviour. This is nonetheless a very specific
corner case and therefore is not further investigated.

Figure 4.3: LiDAR - Test setup (left) and output visualization (right)

4.4.1 Simulation

Assuming the instructions outlined in Section 4.3.1 were followed, it should be possible to
simulate the robot, which integrates a simulated camera and a laser scanner. This would
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Figure 4.4: LiDAR - Overlay of laser scan data with real scenario

be sufficient to start testing the mapping and navigation algorithm, however it is desirable to
replace the laser scanner with the SICK TiM LiDAR used in this project to rely on simulation
data closer to the real life scenario. To do so, the sick_tim package mentioned in Section 4.4
needs to be included in the workspace. Next, the model of the robot needs to be modified to
include the sensor.

While it is outside the scope of this paper to explain in detail how to create and edit the
model of a robot, a brief explanation of the subject is in order. To describe the geometric and
physical properties of the different parts of a robot, ROS makes use of either Xacro (or XML
Macros) or URDF files. The main benefit of using Xacro instead of URDF is the possibility
to import defined component macros simplifying the description of the robot, reducing the
complexity and improving the maintainability and readability of the files. In the code, also
included in the Appendix, the macro of the SICK TiM laser scanner is loaded and a joint
is defined to connect the laser to the front of the chassis of the robot. By launching the
simulation, the robot in Gazebo should appear as shown in Figure 4.5.
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Figure 4.5: LiDAR - Simulation with SICK TiM laser mounted in front and camera on top

The beams of the sensor can also be made visible in Gazebo by editing the respective line
in the xacro model. A cube, a cylinder and a sphere are all placed in the field of view of the
sensor and the reading are visualized in Gazebo, as shown in Figure 4.6. This proves that
the sensor is simulated correctly and the data is reliable.

4.4.2 Hardware

The LiDAR is mounted on a support on the front of the chassis, and the Connection module
is connected to the 12V un-switched auxiliary power output. The data USB cable is then
connected directly to the laptop where ROS is installed. The models require some additional
configuration in order for the laser scanner to be added. First, the sick tim and the amr-ros-
config package need to be in the same workspace. Next, the Xacro file of the robot needs
to be modified to include the laser scanner. Refer to the Appendix, where the models are
included.
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Figure 4.6: LiDAR - Simulation with SICK TiM laser mounted in front and camera on top

4.5 Camera

The camera sensor provides visual information on the surrounding environment and offers
the potential that laser scanners lack to interpret image data. Moreover, ToF (Time of Flight)
cameras are capable of providing additional 3-D range data on the environment in their field
of view. In the scope of this project however a basic Microsoft Lifecam webcam is integrated
to record the experiments in order to provide a visual feedback from the point of view of the
robot.

4.5.1 Simulation

Assuming that the instructions listed in Section 4.3.1 have at this point been completed, a
simulation model of the robot which includes a generic camera is already available. To test
its operation, it is sufficient to spawn the robot in Gazebo, open rviz and add a Camera layer.
A video stream from the simulated camera should appear visible in the graphical tool.
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4.5.2 Hardware

In order to interface the camera with ROS and read its data with it, a ROS driver must be
correctly configured and the sensor calibrated. The cv_camera OpenCV ROS driver provides
a node that can process the camera data stream. Additional information on the package is
given in the listed resource. [16] Assuming the device is correctly configured in Ubuntu and
the driver is installed, by executing in the terminal the line in Listing 4.4 it is possible to test
whether the device is interfaced with ROS.

rosrun cv_camera cv_camera_node

Listing 4.4: Bash command to start the cv_camera_node

This command should start the node streaming the data from the camera, even if no config-
uration has been already carried out. If this is not the case or if the wrong camera sensor
is started, it may be that the device id parameter needs to be set correctly. The graphi-
cal tool rqt_image view should be able to visualize the video stream with the command in
Listing 4.5.

rosrun rqt_image_view rqt_image_view

Listing 4.5: Bash command to start the rqt_image_view tool

Trying now to visualize the data in rviz or to implement image processing ROS applica-
tions before calibrating the camera would not work. In order to perform the calibration, the
cv_camera_node must be publishing data in ROS. The procedure is detailed in the listed re-
source. [17] Finally, the calibration data is output in a compressed file that contains a ost.txt
and a ost.yaml file. Next, a launch file to start the cv_camera_node and adjust the calibration
is shown in Listing 4.6. At this point, the camera should be correctly configured and it should
be possible to visualize the camera stream in rviz.

<launch>
<node pkg="cv_camera" type="cv_camera_node" name="[node_name]" >
<param name="device_id" type="int" value="[device_number]" />
<param name="camera_info_url" type="string"
value="[path_to_folder/ost.yaml]" />
</node>
</launch>

Listing 4.6: cv_camera - Launch file example

As was the case for the LiDAR, the camera sensor needs to be placed on the model of the
robot in the correct place in the xacro file. Refer to Appendix for the model.
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4.6 Virtual Joystick

It is useful to be able to control the robot remotely in order to manually drive it as it collects
and records data on the environment, which can then be fed to a SLAM algorithm to create a
map of the environment, or to give the user the ability to take over control during autonomous
operations. For this purpose, a virtual joystick application can be installed on an Android
device that communicates with the ROS server running on the laptop controlling the robot.

4.6.1 Network

In order to enable the communication between the devices it is advisable to setup an WiFi
hotspot interface on the laptop which the Android device can connect to. Although there may
be different more robust ways to do so, the scope of this project does not entail particular
concerns in terms of security or performance. The only constraints are given by the nature
of the network policies in force, which are quite strict in the university infrastructure. An
external WLAN-USB-Adapter is therefore used to provide a direct access point to the Android
device. Setting up a hotspot in Ubuntu 16.04 does not present particular challenges. After
the interface has been set up, the environment variable has to be set according to Listing 4.7
to allow ROS to communicate using that network interface.

export ROS_IP=[interface_IP_address]
Listing 4.7: Configure ROS to communicate via a network interface

4.6.2 Android libraries

At the moment of this writing, no working Android application for ROS Kinetic is available
in the Google Play store. Source code developed for Android in collaboration with Google
is however available. [18] The instructions are provided to build from the source and install
the application with Android Studio on a device. Attention must be paid to download in
Android Studio the correct API for the device of choice. The latter must be also properly
configured: first the development settings must be enabled and the USB Debugging Mode
must be activated.

4.6.3 Teleoperation

The android_core stack provides a collection of components and examples that are useful
for developing ROS applications on Android. Among the different pre-packaged applications
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in the stack, the android_tutorial teleop offers a mean to remotely control the robot with an
interface resembling that of an actual joystick. After connecting to the ROS master on the
laptop, this application sends velocity messages composed of linear and angular velocities,
that ROS interprets to move and rotate the robot. The official documentation thoroughly
describes how to set up the Android Studio development environment, compile and install
the applications in the stack. [18] There are however some additional steps to interface the
virtual joystick with the robot.

After having installed the android _tutorial _teleop application on a Moto G4 Android de-
vice, during the tests the application crashed regularly. The error seemed to occur when
LaserScan data is published on the ROS server while the Android device is connected,
when the amount of memory requested for allocation quickly exceeds the available size. A
closer look at the code in the src/org/ros/android/android_tutorial_teleop/MainActivity.java
file shows that many layers are initialized, which are unnecessary for a basic remote con-
troller application. The code in Listing 4.8 was therefore edited to the code in Listing 4.9.

@Override
public void onCreate (Bundle savedinstanceState) {
super.onCreate (savedlnstanceState) ;
setContentView (R. layout.main) ;
virtualdJoystickView = (VirtualdoystickView) findViewByld(R.id.
— virtual_joystick);
visualizationView =(VisualizationView)findViewByld (R.id.visualization);
visualizationView .getCamera () .jumpToFrame("map") ;
visualizationView .onCreate(Lists.<Layer>newArraylList (new
— CameraControlLayer () ,
new OccupancyGridLayer("map"), new PathLayer("move_base/NavinROS/plan")
— , new PathLayer ("move_base_dynamic/NavfnROS/plan"), new
— LaserScanlLayer("base_scan"),
new PoseSubscriberLayer("simple_waypoints_server/goal_pose"), new
— PosePublisherLayer (
"simple_waypoints_server/goal_pose"), new RobotLayer("base_footprint"))
— )

Listing 4.8: Remote controller - Java code with unnecessary layers
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@Override
public void onCreate (Bundle savedinstanceState) {
super.onCreate (savedlnstanceState) ;
setContentView (R. layout.main) ;
virtualdoystickView = (VirtualdoystickView) findViewByld(R.id.
— virtual_joystick);
visualizationView =(VisualizationView)findViewByld (R.id.visualization);
visualizationView .onCreate (Lists.<Layer>newArrayList());

Listing 4.9: Remote controller - Java code with no unnecessary layers

While the remote controller publishes messages on the /irtual joystick/cmd vel
topic, the robot is controlled by the ROSARIA library which subscribes to the
/rosaria/cmd_vel topic. One solution is to forward the messages from the joy-
stick to the right topic. The topic tools/relay node does exactly that. In or-
der to launch the node automatically, the line in Listing 4.10 must be added in
the launch file where it is desired to control the robot with the remote controller.
<node pkg="topic_tools" type="relay" name="[node_name]"
args="/virtual_joystick/cmd_vel /rosaria/cmd_vel">
Listing 4.10: Remote controller - Relay node to forward the velocity commands from the
remote controller to the robot

4.7 Mapping

An Autonomous Mobile Robot could be theoretically implemented to navigate an unknown
environment, by setting a goal at a distance relative to the robot starting position. In this
scenario, the robot would try and reach its destination by driving towards it in the shortest
path and, as it finds an obstacle, guessing another trajectory to reach it. This trial-and-
error approach is evidently not the most efficient when the geography of the environment
does not change in time. To optimize the navigation of the robot in such a scenario it is
desirable to obtain a map, which the robot can then use to calculate a viable path towards its
set destination while avoiding travelling in dead-ends along its way. In case the geography
of the environment is known, it is possible and recommended to create a map based on
this information which is correctly scaled and compatible with the navigation stack, while
avoiding to include in it objects that may be located temporarily in the environment and that
the SLAM algorithm would interpret as static obstacles. When the map is not available, ROS
implements SLAM algorithms that can create one with the aid of sensors, such as laser scan
data from a LiDAR and odometry data from rotary encoders.
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4.7.1 gmapping

The gmapping algorithm available in ROS relies on LaserScan data from a LiDAR that is
oriented so that its beams are parallel to the ground. This is because the SLAM approach
compares incoming sensor data to the previously scanned environment and tries to calculate
the shift in the robot’s position, to localize the device within the map by matching the readings.
If the LiDAR would be inclined to scan the ground in front of the robot, the algorithm would
not be able to directly perform the matching, as incoming sensor data cannot be compared
to existing map information. The algorithm relies on odometry data as well, obtained from
the wheel encoders.

The information on the movements of the robot is conveyed through a coordinate frames
transform tree used to compute the relative position of the robot with respect to its starting
position. Additionally, the transform information between the laser scanner and the chassis
of the robot is required. Figure 4.7 shows a correct tf transform tree that provides the nec-
essary information to the gmapping algorithm, where the arrows indicate transform relations
between frames. It is therefore crucial to make sure that these are correctly published before
proceeding in mapping the environment. For that to happen, it is necessary that the URDF
model of the robot correctly defines the link between the laser scanner and the chassis. The
Appendix provide these models for the real and simulated Pioneer P3-DX robot. Additionally,
the joint_state publisher and robot_state _publisher nodes need to be started to publish the
transform information based on the model, as shown in the example launch configuration in
Listing 4.11.

<launch>
<param name="robot_description" textfile="[path_to_urdf_file]" />
<node pkg="joint_state_publisher"
type="joint_state_publisher" name="[node_name]" />
<node pkg="robot_state_publisher"
type="state_publisher" name="[node_name]" />
<launch />

Listing 4.11: Launch configuration publishing tf transform information

Next, the launch file needs to be configured to initiate the following operations:

e Start the robot with the rosaria interface.

Load the odometry calbration parameters, if available.

Publish tf transform data based on the URDF robot model.

Start publishing LiDAR LaserScan data.

Start recording data with the rosbag tool.
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Figure 4.7: Mapping - tf tree configuration for gmapping

The robot can be then driven with the remote controller in the environment while the data
is being recorded from the LiDAR and the tf transforms providing odometry information. To
minimize the cumulative odometry error that may still be present after calibration it advised
to drive the robot at a steady velocity and trying to steer as little as possible. Furthermore
it is recommended to start and end the exploration at the same point in order to close the
loop, to allow the algorithm to try and adjust the map by accounting for eventual drifts in the
localization. Neglecting these steps may result in oddities during the mapping phase. It is
also worth mentioning that, although it is possible to map the environment in real time while
the robot is navigating in it, this is not recommended. This is because both navigation and
mapping processes are considerably expensive in terms of required computation power and
a sudden slowdown in the performance on a machine with limited resources could deteriorate
the quality of the resulting map. Moreover, having a recording of the exploration allows to
adjust the gmapping parameters and test the effects on consistent data and without the need
to repeat the exploration each time.

The gmapping is, according to the documentation, a SLAM approach that uses a particle
filter to obtain static grid maps. [19][20] The location or pose of the robot in the map is
estimated by a probability distribution obtained by computing a set of hypothetical poses, the
so-called particles. This process uses a combination of laser range and odometry data to
decrease the uncertainty of the prediction. The region in the map with the highest particle
density is then assumed to be where the robot is located. Simultaneously to the localization,
the map is incrementally updated. Describing the algorithm in depth is outside the scope
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of this paper. Instead an explanation is given on the parameters that can be adjusted to
improve the quality of the map. Although the algorithm relies on complex probabilistic models
and its stochastic behaviour can produce seemingly inconsistent results between iterations,
even with the same input and configuration, some parameters influence the outcome in a
predictable way. By replaying the same data set, or bag file, and singularly adjusting these
parameters, it is possible to compare the results and identify the pattern of how they affect
the outcome. Below are the parameters which appear to have a direct impact when mapping
the hallway of the university, where the effect is evaluated in Section6.1.

e maxRange: in meters, this depends on the laser scanner used.

e maxUrange: in meters, this value must be less than maxRange and tells the algorithms
to consider the area up until this distance as free from obstacles

e delta: sets the resolution of the map, with lower values resulting in a larger map with a
higher pixel/meter ratio

e Istep and astep: controls the linear and angular adjustment step of the map based
on the estimated position from the laser scan matching; it should be minimized if the
odometry information is reliable

Moreover, slowing the rate at which the recorded data is replayed seem to positively affect
the quality of the map, as the computer is not over burdened with having to hastily process
the data and update the map. After the map is built, it is necessary to save it using the
map_saver command of the map_server package. This produces two files, one map image
like the one shown in Figure 4.8 and one text file that specifies the resolution of the map, its
dimensions and the colour thresholds between free, unknown and busy space.
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Figure 4.8: Mapping - Example of a map generated with gmapping
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4.7.2 From actual map

As mentioned, a map which is compatible with ROS is simply an image and a text file that
specifies a few parameters. Knowing this, it is straightforward to adapt an available map that
is correctly scaled in any image editing software. The resulting map shown in Figure 4.9
represents the ground-truth map of the environment and can be then used to command the
robot to autonomously drive in it. The procedure is the following:

1.
2.

o o A~ W

Determine the desired resolution of the map in pixels per meter.

Compute the dimensions of the map based on its resolution and the dimension of the
environment.

Create an empty image and fill it with grey colour, representing an unknown space.
Overlay the actual map on top and scale it according to the resolution.
Fill areas corresponding to free space in white.

Paint a black border around them, representing walls and obstacles.

L L

Figure 4.9: Mapping - Example of a map generated manually from ground truth data
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4.8 Navigation

The goal of an Autonomous Mobile Robot is ultimately to navigate the environment towards a
set goal as efficiently as possible while avoiding obstacles in its way, both static and dynamic.
The former category includes obstacles such as walls and furniture which can be previously
mapped and which are assumed not to change their position. Dynamic obstacles on the
other hand change their position over time and it is not possible and even not desired to
include them in a static map. These must therefore be detected and successfully avoided
while the navigation is in process.

The literature and resources on this topic are extensive and diverse and ROS provides com-
plete documentation on its mapping and navigation stacks in addition to many examples. [21]
In order to achieve autonomous navigation capabilities, the ROS navigation stack must be
integrated with the Pioneer P3-DX robot. Several sub-systems need to be interfaced accord-
ing to the digram shown in Figure 4.10. This section describes each of these and outlines
how they can be configured.

"move_base_simple/goal” i 3
geometry_msgs/PoseStamped Navi ga tion Stack Setu p
!
move_base l "/map"
¥ nav_msgs/GetMap map_server

il global_planner ~— global_costmap

sensor transforms internal / T sensor topics Sensor sources
tf/tfMessage nav_msgs/Path recovery_behaviors l ss:rqsg:_rrnnzgzl/;(?isn?cslgig
odometry source “odom” local_planner  =—— local_costmap
nav_msgs/Odometry

"cmd_vel"|geometry_msgs/Twist

Y provided node
optional provided node
platform specific node

base controller

Figure 4.10: Navigation - Stack block diagram

http://wiki.ros.org/move_base

4.8.1 Interface

The move_base node is the high level core component in the stack, as it is the one that links
global and local planner and acts as an interface with the external sensors data stream and
the localization sub-system. It is also responsible of commanding the robot by publishing
velocity messages. The move_base system allows to choose between an array of different
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local and global planners, enable various recovery behaviours and adjust the frequency at
which the global planner executes, among others listed in the official documentation. [22]

4.8.2 Costmaps

Regardless of the specific planners, these act based on their respective costmap, which
encompass additional layers of informations on the immediate surrounding of the robot (/o-
cal_costmap) or on the known map of the environment (global_costmap). While the lo-
cal_costmap is created in a limited window centered on the robot which is populated with the
obstacles that the sensors currently perceives, the global_map is either initialized based on
a static map or empty, and is updated as the robot explores the environment. The additional
layers of information mentioned above comprise most notably the following:

e static_layer: Contains information on the static map, if provided.
e obstacle layer: Contains information on the obstacles that are or have been detected.

e inflation layer: Inflates the obstacles to increase the cost of the cells which are adja-
cent to them.

It is worth mentioning how the inflation_layer is implemented. As shown in Figure 4.11,
this layer increases the cost of the space adjacent to the obstacles. The space within the
radius of the robot is considered to have a lethal cost, while the space further away has a
decreasing cost. It is possible to configure the inflation_radius and the cost_scaling factor
affecting the rate at which the cost function decays, in order to bias the planners to prefer
trajectories more distant to the obstacles. In order to visualize this additional information is
important to set up a layered costmap configuration. The official documentation offers a valid
reference on this process. [23]

4.8.3 Localization

The amcl or Adaptive Monte Carlo Localization subsystem estimates the pose of the robot
based on a known map of the environment and laser scan data from the LiDAR, and its
purpose is to improve the accuracy of the localization process, especially when the odometry
data is not reliable. The process of localizing through odometry is called Dead Reckoning,
where the current position is estimated based on the previous calculated location and the
perceived movement of the device from there. As the information from the wheel encoders
inevitably presents a measurement error, this leads to an incremental drift of the perceived
location from the actual one that keeps increasing after each estimate. To overcome this
problem, the amcl uses a statistical model that evaluates the likelihood of the location of
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Figure 4.11: Navigation - Inflation layer cost characteristic

http://wiki.ros.org/costmap_2d/hydro/inflation

the robot based on its surroundings, performing scan-to-map matching and computing the
transform between the base link or chassis of the robot to the map_frame. As shown in
Figure 4.12, this localization method effectively bypasses the odometry transform used in
the Dead Reckoning approach.

It is recommended to integrate the amc/ subsystem when deploying the robot in a real
life scenario as explained in the official documentation. [24] As the amcl node is started,
an initial pose estimate with respect to the map needs to be provided, either using the
initial_pose_x, initial_pose_y and initial_pose_a parameters or graphically with rviz. lts
parameters can be fine tuned to account for the expected noise of the laser scanner and
the drift of the odometry and can be used to bias the localization more towards one source
or the other. In Listing 4.12 is a basic launch configuration with the default parameters.
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<launch>
<node pkg="amcl" type="amcl" name="[node_name]">
<param name="initial_pose_x" value="$([initial_pose_x])"/>
<param name="initial_pose_y" value="$([initial_pose_y])"/>
<param name="initial_pose_a" value="$([initial_pose_yaw])"/>
</node>
<launch />

Listing 4.12: Launch configuration using the amcl component

When testing in the simulation environment however, the amcl sub-system seemed to
cause odd jumps in the reported location of the robot in order to simulate excessively
inaccurate odometry data. In this case, if the behaviour of the amc/ algorithm itself is not
the focus of the experiment, the recommended approach is to use the fake localization
that converts error-less odometry data into pose, particle cloud, and transform data of
the form published by amcl. The initial pose can be set via the delta_x, delta_y and
delta_yaw parameters. This node requires however an additional transform between
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the map and the odometry frame. Listing 4.13 provides an example launch configuration.

<launch>
<l—— creates a tf transform between the odometry and the map frame
so that they coincide —>
<node pkg="tf" type="static_transform_publisher"
name="map_odom_broadcaster"

args="
0000O0OO <l—— x y z yaw pitch roll —
/map <l—— parent_frame_id —>
/odom <!l—— child_frame_id —>
100 <l—— publish_period_in_ms —>
">

<node pkg="fake_localization" type="fake_localization"
name="[node_name]" >
<param name="delta_x" value="$([initial_pose_x])" />
<param name="delta_y" value="$([initial_pose_y])" />
<param name="delta_yaw" value="$([initial_pose_yaw])" />
</node>
<launch />

Listing 4.13: Launch configuration using the fake_localization component

4.8.4 Global planner

The global_planner sub-system is in charge of evaluating a long-term path from the location
of the robot to the its final destination. This decision is made based on the global _costmap,
which represents the knowledge of the environment acquired up until the current moment
and is based on a static map, if available, and on previous exploration. The planner executes
when a new goal is set or when the local_planner signal that the planned trajectory is ob-
structed. Alternatively, it can be configured to run in set time intervals. To configure a global
planner, the move_base package base global _planner parameter need to be set. Notable
examples of global planners implemented in ROS, according to the official documentation,
are:

e navin: A grid-based global planner that uses a navigation function to compute a min-
imum cost plan from a start point to an end point in a grid. The navigation function is
computed with Dijkstra’s algorithm.

e global planner: A fast, interpolated global planner built as a more flexible replacement
to navifn.
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e carrot_planner: A simple global planner that takes a user-specified goal point and
attempts to move the robot as close to it as possible, even when that goal point is
located inside an area occupied by an obstacle.

4.8.5 Local planner

The other essential sub-system of the navigation stack is the local planner, in charge of
computing short-term trajectories to drive the robot close to the path towards the destination
laid out by the global planner, while avoiding unexpected obstacles not previously detected,
tracked in the local _costmap. Different implementations are available in ROS and Table 4.1
lists the features of two alternatives, the Timed Elastic Band and Dynamic Window Approach
planners, evaluated in Section 6.2 of this paper.

The Dynamic Window Approach or DWA is thoroughly described in the listed resources,
along with the procedure on how to configure it. [25][26] Quoting the listed papers, the goal
of DWA is to produce a (v, w) pair of translational and rotational velocities respectively, which
represents a circular trajectory that is optimal for the robot'’s local condition. DWA reaches this
goal by searching the velocity space in the next time interval. The velocities in this space are
restricted to the admissible set, which means the robot must be able to stop before reaching
the closest obstacle on the circular trajectory dictated by these admissible velocities. Also,
DWA will only consider velocities within a dynamic window, which is defined to be the set of
velocity pairs that is reachable within the next time interval given the current translational and
rotational velocities and accelerations. DWA maximizes an objective function that depends
on the progress to the target, clearance from obstacles and forward velocity to produce the
optimal velocity pair.

The Timed Elastic Band approach is described in the listed publication. [27] Quoting the
latter, the algorithm implements an optimal local trajectory planner, where the initial trajec-
tory generated by a global planner is optimized with respect to minimizing the trajectory
execution time (time-optimal objective), separation from obstacles and compliance with kin-
odynamic constraints, such as satisfying maximum velocities and accelerations. The current
implementation complies with the kinematics of non-holonomic robots (differential drive and
car-like robots) and holonomic robots. The optimal trajectory is efficiently obtained by solv-
ing a multi-objective optimization problem. The user can provide weights to the optimization
problem in order to specify the behaviour in case of conflicting objectives.

Configuring the planners above can be challenging due to the multitude of parameters that
depend on a variety of factors, such as the robot characteristic, the deployment environment
and the performance of the machine. Each algorithm has its own set of parameters and
discussing their effect on the outcome is not in the scope of this paper. To achieve a balanced
configuration it is however recommended to follow these general guidelines:
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e Planner frequency: This parameter of the higher-level move_base component deter-
mines the rate at which the planner executes and transmits velocity commands to the
robot. This parameter value should be high enough so that the response of the system
is satisfactory and the movement of the robot is fluent, with no jitter. Further increasing
this frequency may lead to a high computational load and a decay in the performance.

e Trajectory optimization: These parameters depend on the specific algorithms. These
include how far in space and in time should the algorithm plan, the number of different
trajectories to be evaluated and the amount of effort made during the optimization step
to select the most efficient one. It is desired to adjust these parameters to lower the
computational load while maintaining a satisfactory performance.

TEB DWA
Alias Timed Elastic Band Dynamic Window Approach
Strategy Continuous trajectory optimiza- | Sampling-based trajectory
tion predictive controller generation, predictive con-
troller
Optimality Time-optimal (or ref. path fi- | Time sub-optimal with kinody-
delity) with kinodynamic con- | namic constraints, samples of
straints (multiple local solu- | trajectories with constant cur-
tions, parallel optimization) vature for prediction (multiple
local solutions)
Kinematics Omnidirectional, differential- | Omnidirectional and
drive and car-like robots differential-drive robots
Computational | High Low/Medium
burden

Table 4.1: Navigation - Local planners comparison

Robot Operating System (ROS): The Complete Reference, Volume 2 [28]

Independently of the chosen local planner, the following robot-related parameters need to be
set according to the specifications, in order for the planner not to misjudge the feasibility of a

calculated trajectory:

e maximum linear velocity in m/s

e maximum linear acceleration m/s?®

e maximum angular velocity in rad/s

e maximum angular acceleration in rad/s?
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In order to determine the maximum linear velocity and acceleration when the robot docu-
mentation omits them, the robot is controlled to drive forward and, as soon as it reaches
a constant velocity, the published odometry data provide the information. For the angular
velocity and acceleration parameters the procedure is similar, but the robot rotates in place
instead.



5 Approaches assessment

Throughout the development of the project, implementation issues arose that could be tack-
led using different approaches. In each case, a thorough evaluation was made in order to
identify the most suitable solution. In this chapter, these evaluations are presented while
explaining the reason why one approach was ultimately favoured and pursued.

5.1 Robotic Framework

In the very first phase of development, two frameworks were identified which were deemed
suitable to develop the system described in this paper while satisfying the outlined imple-
mentation requirements. As this choice is going to define the whole development process,
it is crucial to thoroughly evaluate the available solutions and carefully consider which one
best suits the needs. Rushing into the development without doing so may lead to dead ends
in further stages.

The ever growing open-source community involvement in the field of robotics software made
many frameworks available and the quality of some of the solutions offered is remarkable,
but it can be challenging to find one that can offer guarantees in terms of reliability, support
and usability needed in order to deploy a robust and lasting system. While many different
robotics frameworks are available at the moment of this writing, there is not one which is
absolutely superior in every aspect. As a matter of fact, it is not unusual that a combination
of different frameworks is implemented to meet diverse needs of some complex system.

It should be also mentioned that, given the current dynamism in robotics software, it is likely
that the platforms currently in use and developed by a large community are going to be
abandoned in favour of emerging new solutions within a short span of time.

Covering all the robotic frameworks currently available is not in the scope of this paper and
the reader is encouraged to research whether new solutions might have emerged following
this publication. Here two of the frameworks, ROS and ROCK, have been evaluated as both
have been proven suitable to the development of Autonomous Mobile Robots, as systems
with mapping and navigation functionalities were successfully deployed.
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ROS

The Robot Operating System is an open-source framework that provides a diversified set of
tools to model different robots and simulate their behaviour in a virtual environment, inter-
faces with sensors and actuators and libraries to implement advanced functionalities such as
SLAM and dynamic trajectory calculation.

The architecture is based on a message-based peer-to-peer communication infrastructure
between independent software units, or nodes, blocks of functional code and are imple-
mented as classes that wrap robotic software libraries. This independence between nodes
allows different specialists in robotics to develop and maintain single packages, either in
Python or C++, that communicate with each other through well defined interfaces, or topics,
by sending message asynchronously using a Publisher - Subscriber pattern. Of particular
relevance in the scope of this project is the availability of a navigation stack of packages
which implement complex SLAM and trajectory calculation algorithms, transparent to the
user.

ROCK

Developed by Deutsche Forschungszentrum flr Kunstliche Intelligenz GmbH (DFKI), the
Robot Construction Kit or ROCK is built upon the Orocos Real-Time Toolkit. It implements
Kinematics, Dynamics and Bayesian Filtering Libraries that can be deployed in navigation
and mapping application. The core component of the toolkit is however its toolchain that en-
ables different software components to interact asynchronously in a hard real-time fashion.

Developed by KU Leuven University since 2001, Orocos is one of the oldest robotics frame-
works available. A wide variety of applications have been implemented with this frame-
work where Real Time capabilities are mission-critical, ranging from industrial applications
to Autonomous Mobile Robots. Most notably the Berlin Racing Team used the Orocos RTT
toolkit to develop the software components of an autonomous vehicle, which was selected
by DARPA as semifinalist in the 2007 Urban Grand Challenge Competition. The project is
active, although the latest stable version 2.6.0 of the toolkit dates back to Dec 2012.

Building upon the Orocos RTT, ROCK (Robot Construction Kit) offers additional features
aimed to improve sustainability, with error detection, reporting, and handling capabilities,
scalability and reusability, allowing the integration of ROCK framework-independent drivers
and components using another framework of choice. Additionally, it provides data visualiza-
tion with the integrated Vizkit tool. The components are developed in C++ while the integra-
tion in the framework is carried out by configuring with Ruby the oroGen tool that builds the
RTT structure.
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Development status

As the aim of the project is to implement a platform that could be used for researches for
years to come, one of the key issues is choosing a framework that is up-to-date and is going
to be maintained and developed while the platform is in use.

ROS latest long term stable release, Kinetic Kame, dates back to May 2016 followed by a new
one, Lunar Loggerhead, dating back to May 2017. Furthermore, the activity on the official
and repository web-pages is sustained and consistent, with an large community contributing
to the steady development of the project.

On the other hand, while ROCK is officially maintained and significant updates are expected
to be released in early 2018 on the development branch of the software, the latest stable
official release dates back to February 2012. The activity on the official website is also
sporadic, raising the concern of whether a platform implemented using ROCK could be kept
up-to-date in the future.
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Resource availability

Since the platform is likely to be used for short-term researches carried out by developers
with little or no previous experience with the framework, it is crucial that sufficient resources
and consistent community support are available.

A wide array of material on ROS is available online, ranging from tutorials and code templates
to books and publications, both on official and third-party websites. Different IDEs can also
be configured to develop with the framework, simplifying the development process.

The ROCK platform provide a moderate amount of tutorials of the core components of the
framework, but there is virtually no resource available outside the official website. This leads
to a particularly steep learning curve and to the risk of development dead ends.

Support

During the course of any project it may very well be that external support is necessary to
overcome some issues. Therefore, it is helpful to be able to rely either on an active commu-
nity or a dedicated official support team should the necessity arise.

The community behind ROS is extended and diverse, ranging from robotics specialists to
involved users, which contribute to a vast knowledge base. It is therefore fairly common to
promptly find an answer for any given topic in the forum.

The ROCK community is mostly comprised of researchers and developers of the DFKI. While
the level of competence is undoubtedly high, receiving a prompt answer is on the other hand
not a likely scenario, potentially slowing the development process significantly.

5.2 Robot

A fundamental choice that carries numerous implications in the development of the project
is clearly the robot platform on which the system is implemented. While a fundamental
characteristic of ROS is that it aims to be hardware-independent, offering standard interfaces
of communication between the different nodes, a navigation stack that provides high-level
abstraction and functionalities regardless of the components it relies upon, ultimately the
framework needs to control the actuators and motors of the robot via compatible low-level
drivers. Moreover, the simulation environment also requires accurate models of the hardware
to be able to accurately recreate the behaviour of the robot in any given test scenario. These
models contain information on the geometry of the robot, the accurate position and inertial
characteristics of each of its components, on the connections between them and on the joints
with the wheels that the robot uses to move. Finally, the availability of examples and demo
applications is mostly robot-specific, with platforms widely used by the community offering
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more so than experimental ones. Although both drivers and models could theoretically be
realized when sufficient access to the specifications and technical documentation is provided,
and implementing some basic application is feasible, given the relatively short project time-
frame it is however preferable to choose a robot for which these resources are available.

Initially, the Fraunhofer VolksBot XT was identified as a suitable platform. The main reason
for this choice was the rugged design and sturdiness of the chassis, which could theoretically
withstand severe impacts and adverse meteorological conditions. Moreover, the peculiar
topology of the wheels would allow it to drive through extreme terrain conditions (hence
the name) and supposedly climb stairs. Eventually, the Pioneer P3-DX robot from Adept
Technology was chosen for the reasons listed below:

ROS support: The main factor that ultimately determined the abandonment of the VolksBot
platform is the availability of ROS compatible software and drivers. The robot uses two
Maxon DC motors to drive the wheels but while in current models these are interfaced with a
EPQOS 70/10 controller from the same brand for which a ROS driver is available, the legacy
model available for this project implements a Fraunhofer Motor Controller built in-house and
for which the support has been discontinued. In order to be able to interface the robot with
ROS, this controller would have needed to be replaced for an addition cost. The Pioneer
P3-DX comes with a fully ROS compatible software package and implementation examples,
making it the most suitable solution.

Step climbing feature: The Fraunhofer VolksBot XT is marketed as capable of climbing
stairs, which would have made the platform particularly suited to drive in outdoor environ-
ments. Previous experiments with this feature however reportedly failed, as the robot would
capsize backwards while trying to drive up the steps, losing the advantage against the Pio-
neer 3-DX robot.

Weather resistance: The VolksBot XT chassis is robust but its open frame design make
it so that any external components mounted on it would be exposed to weather conditions.
Since the system needs to be implemented in a short time, the ROS framework is installed
on a laptop instead of designing some more elaborate solution and placing the latter on the
frame of the robot would not offer any protection against rain. In this respect, the VolksBot
XT does not offer any additional benefit compared to the Pioneer 3-DX platform, which on
the other hand provides flexibility in the installation of external protective casing on top of its
flat surface.

5.3 Remote controller

Controlling the robot while it is moving on the ground is not possible using the laptop mounted
on top of the chassis. It is then advisable to setup a communication interface between the
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laptop and another device. While different devices could be used as remote controllers, an
Android device is ultimately preferred to the other options evaluated, a radio transmitting
joystick device and another laptop. The criteria this choice is based upon are customization
capability and portability.

Customization capability: This indicates the possibility to implement new functionalities on
the device, other than bare minimum navigation controls. While a legacy radio joystick could
perhaps send some function signals that could be interpreted by ROS to enable different
features during operation, this device is hardware limited as it is not possible to implement a
Graphical User Interface. A second laptop on the other hand could make use of the whole
range of ROS tools, to visualize every parameter and sensor data stream and control the
robot and would therefore be the best candidate in this respect. An Android device is capable
of implementing new functionalities and a few core libraries are already available implement-
ing basic features, such as navigation control or teleoperation and image visualization from
a remote camera, among many others. It is however more cumbersome to build and install
these applications and it may be necessary to customize them to meet specific needs.

Portability: Considering that the mobile robot is expected to navigate in relatively large
environments, it makes sense to be able to physically follow it while retaining the control
over its operation. In this case, a radio transmitting device and an Android phone or tablet
offer the same portability advantage on a larger laptop device, which is not suited for mobile
operations.



6 Evaluation

This section describes the experiments conducted, which aim to evaluate the reliability of
the different approaches that lead to an accurate map and to a safe and efficient navigation
in the environment. While performing these experiments, new issues surfaced which were
not foreseen at an earlier stage. Due to limited time availability, some of them remain how-
ever unsolved and are described, along with possible approaches on how to tackle them.
These could offer the reader ideas on how to further refine the platform and improve its
robustness.

6.1 Mapping

It is of interest to determine the most robust hardware and software configuration that can
produce a 2-D map of the environment, which is as accurate as possible to the actual one
in terms of geometry and dimensions. Specifically, the experiments are aimed to answer the
following questions:

e Which SLAM algorithm can produce the most accurate map of the test environments?
e Which sensor configuration can produce the best results?

e What are the factors that influence the quality of the map?

e How can the accuracy of the map be improved?

The test scenario is the hallway of the 7th floor of the university building and is characterized
by long corridors with narrows paths connecting the two main wings. Moreover, the corridors
lack distinguishing landmarks, such as curves or furniture. In the experiment, the robot
travels in the environment shown in Figure 6.1 following the path in red, starting and ending
at the same point, in order to create a static map. The robot is controlled manually during
the trip using an Android remote controller device, while the environment is sampled with the
LiDAR and the data is recorded in a bag file. Once the exploration is concluded, the map
is built using the gmapping algorithm, one implementation of SLAM in ROS, while replaying
the recording.
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Figure 6.2 shows how the following parameters are measured to evaluate the accuracy of the
map, where the blue contour represents the boundaries of the map created using SLAM:

e Width and length of the south and north wing corridors.

e Drift in the south wing, measuring how severe is the bending phenomenon observed.
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Figure 6.1: Map - Experiment execution
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Figure 6.2: Map - Experiment evaluation
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6.1.1 Simulation

The scenario is first created in the Gazebo simulation environment by modelling the actual
map of the hallway. The setting, shown in Figure 6.3, is dimensioned according to the real
one. The map resulting from the gmapping SLAM algorithm is shown in Figure 6.4 overlaid
with the ground truth map. It displays some imperfections, as some false detections are
scattered along the path of the robot and the corridor is slightly bent.

D

Figure 6.3: Map - Simulation of the hallway in Gazebo

Figure 6.4: Map - Simulated environment

6.1.2 Uncalibrated odometry

Having assessed the SLAM configuration in the simulation, the next test is run in the real en-
vironment with the same settings. The robot is controlled manually to drive the same itinerary
while recording the data. Figure 6.5 shows the resulting map overlaid with the odometry data
and the ground truth map, while Table 6.1 lists the measurements. The trajectory does not
remotely resemble the actual one of the real robot. This causes the east-end of the south



6 Evaluation 55

wing corridor to be mapped as two different locations as the robot travels through it the sec-
ond time, closing the loop. The map is also scaled differently compared to the correct one,
as the measured length of the south wing corridor has a negative error of 3m. The reason
is that the odometry data coming from the wheel encoders is not accurate. Section 4.3.3
outlines how to evaluate the accuracy of the odometry data and to calibrate the encoders.

Figure 6.5: Map - Inaccurate odometry

6.1.3 Calibrated odometry

While testing the odometry accuracy and comparing the actual position with the one reported
by the robot, the following approximate errors were measured:
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e Horizontal drift of 3cm left every meter forward.
e Positive offset of 1cm every meter forward.
e Positive offset of 5° every 180° of clockwise rotation.

After calibrating the odometry, the same experiment is repeated, yielding the result shown in
Figure 6.6 and measured in Table 6.1. The reported trajectory is much more faithful to the
actual one, where the begin and end point are closer to one another. Consequently, the south
wing corridor is now mapped correctly as a single location. lIts scaling is more accurate, as
the measurement error of its length decreases by 2m. It is however still bent, with a drift of
3.6m.

Figure 6.6: Map - Calibrated odometry

6.1.4 Parameters adjusted

The next step is to adjust the parameters of the gmapping algorithm in order to post-process
the recorded data in the most effective way to produce a reliable map, as explained in Sec-
tion 4.7.1. The result is shown in Figure 6.7 and the measurements are listed in Table 6.1.
The corridors are straight and parallel with each other, with a drift of 0.8m, while the scaling
and dimensions are accurate, with an error of 0.1m in the length of the south wing corri-
dor. The only remaining flaw is the noise which appears in the proximity of the doorways,
as beams of the laser seem to travel a longer distance due to reflection on the corners. On
the other hand, the false detections that marked the trajectory of the robot are removed by
restricting the valid field of vision of the LiDAR that previously included some sections of the
chassis of the robot, which were perceived as obstacles.

A detailed explanation on the parameters of the gmapping algorithm is given in the official
documentation. However, the focus here is to describe how adjusting the following parame-
ters affected the result:
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Figure 6.7: Map - Optimized settings

North wing South wing
Width /m | Length/ m | Width/m | Length/ m | Drift/ m
Actual 2.2 22.7 2.2 60.0 0
Simulated 2.2 21.8 2.2 57.6 0.3
Uncalibrated 2.2 22.4 2.2 57.0 9.8
Calibrated 2.2 22.8 2.2 59.0 3.6
Optimized 2.2 22.6 2.2 59.9 0.8

Table 6.1: Map - Measurements

e maxRange = 4.0: in meters, eliminates the false detections throughout the path of the
robot.

e maxUrange = 3.0: in meters, trims the laser scan ranges to this value, reducing the
reflection on the corners.

e delta = 0.3: in metres per occupancy grid block. By increasing the resolution of the
map the definition of corners and obstacles in general is improved.

e Istep = 0.01 and astep = 0.01: in meters, improve the scaling of the map and partially
correct the drift.

The last two parameters, Istep and astep, control how much the algorithm relies on laser data
to correct the map. These appear to be the most relevant in this specific scenario, where the
environment is characterized by long corridors lacking specific landmarks. In this case, even
if the robot moves constantly forward and the odometry data reflects the movements, a short
ranged laser keeps sampling an almost identical local environment, with an even wall on
each side and no front wall, since its range is not enough to reach it. The consequence is
that, based on the laser data, the robot perceives the same surroundings and its position
does not seem to change. The gmapping algorithm relies on a combination of odometry and
laser range data to determine its position and, if the parameters mentioned above are not
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reduced, it excessively corrects the position of the robot based on the laser scans, introducing
measurement error in the map. One alternative approach would be to use a laser scanner
that can reach the end of the corridor to provide a reliable reference point.

6.1.5 Hector SLAM

This issue is much more evident when using a SLAM approach that relies solely on laser
data for both localization and mapping. hector_slam is one of these algorithms available in
ROS that does not use odometry data and can therefore be considered a viable option for
robots lacking wheel encoders or similar sensors. By building a map using the same data
set, the result in Figure 6.8 shows a remarkable discrepancy between the trajectory of the
robot and the perceived map of the hallway, leading to a much shorter length of the corridor
and an overlap of sections of the map when the robot closes the loop, rendering the map
completely inaccurate.

Figure 6.8: Map - Hector SLAM algorithm, only laser data
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6.1.6 Sonar mapping

Using the sonar readings with gmapping did not produce any usable results, since the system
comprises 8 sonars for 8 range data points each scan, not enough to localize the robot in
the environment. Figure 6.9 shows a map completely distorted. Worth noting is that the
odometry was not yet calibrated at the time the data was collected. It is nonetheless evident
that the sonar alone is not sufficient to create a map using the gmapping SLAM approach.

Figure 6.9: Map - Sonar data

6.1.7 Irregular trajectory

Next the robot is driven through the same path, but this time following an irregular trajectory,
as it is manually steered from left to right with varying speed in a random fashion. The
purpose of the experiment is to assess whether the accuracy of the map is affected by an
odd odometry pattern. Two observations can be made about the result shown in Figure 6.10.
It is evident that, by steering the robot throughout its itinerary, the odometry error increases
drastically, as the coinciding start and end point are perceived by ROS as far apart from each
other. This is because the framework relies on the rotary encoders to track the trajectory
of the robot and, even after a manual calibration of the related parameters, the remaining
rotation error accumulates every time the robot swerves. This causes a measurement error of
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approximately 2m in the length of the south wing corridor and a drift of 4m. It can be assumed
that, when the gmapping algorithm relies on calibrated odometry, the error caused by driving
in an irregular trajectory is generally less severe than in the case where the odometry is
not accurate. However, this map is generated from data collected in a different exploration
than in the previous cases and the difference might not be entirely caused by the trajectory
followed by the robot.

Figure 6.10: Map - Irregular trajectory

6.1.8 Dynamic disturbances

Lastly, the robot travelled once the south wing corridor back and forth as the author walked
in a random fashion in front of the laser scanner. The goal of this experiment is to determine
whether dynamic objects can influence the outcome of the mapping process and appear as
static false detections in the map. Shown in Figure 6.11 the blue trace represents the laser
readings as an obstacle travelled in the field of view of the laser scanner. The quality of
the resulting map does not seem to be remarkably affected nor any false detections appear
in it after the process. While a drift of approximately 1.7m is measured, comparing it with
previous results from different explorations is hardly meaningful.
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Figure 6.11: Map - Dynamic obstacles

6.1.9 Summary

The findings can be summarized as follows:

The simulation environment is an ideal tool to test the SLAM configuration as it offers
an inexpensive and quick mean to have some preliminary results.

In case the SLAM algorithm of choice relies on odometry information, it is recom-
mended to assess whether this data is accurate before attempting to map an environ-
ment and calibrate it if it is not, since the outcome of the process may be significantly
affected by it.

Mapping without odometry information is feasible and accomplished by relying on laser
scan data, however the outcome largely depends on whether landmarks in the envi-
ronment are in the range of the scanner to provide a reference.

The gmapping algorithm does not appear remarkably affected by dynamic obstacles
transiting in the field of view of the laser scanner nor by direction changes of the robot
during the exploration.

It is recommended to perform the mapping after having previously recorded the data
during the exploration, in order to best adjust the algorithm parameters to produce an
accurate map.

6.1.10 Open issues

Undetectable obstacles

In the scenarios described above, the robot was purposely kept clear of undetectable ob-
stacles, such as furniture elevated from the ground and the descending staircase. The 2-D
SICK TiM LiDAR mounted in front of the device and scanning the plane parallel to the ground
is virtually blind in these circumstances. This is clearly a highly critical risk that is to be con-
sidered accordingly. The most straightforward but tedious approach is manually correcting
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the map with an image editor, placing boundaries around the undetected obstacles. While
tilting downwards a 2-D laser scanner so that its beams are pointed directly on the ground
in front of the robot could solve the staircase issue, higher obstacles would still be invisible.
Finally, a more sophisticated approach would be to use a 3-D laser scanner, or a 2-D model
where its inclination is controlled by a servo motor, that could be used to create a 3-D map
signalling the presence of these obstacles.

6.2 Navigation

The experiments described in this section aim to evaluate the robustness of the navigation
stack included in ROS. Robustness refers to the ability to reach a set goal in different sce-
narios, with different conditions interfering in the process.The question these tests are meant
to answer are the following:

e How close can the robot position itself from a set destination?
e What are the factors that influence this accuracy?
e How does the device react as dynamic obstacles are detected?

e Can the robot reach a set destination in an unknown environment?

6.2.1 Slalom

The goal of this experiment is to evaluate the behaviour of the robot as it needs to keep
adjusting its trajectory and travel in a zig-zag pattern in order to avoid obstacles located on
its ideal trajectory, at increasingly closer distance to one another.

As was the case for the mapping feature evaluation, the first test is performed in the sim-
ulation environment. The purpose is to assess the behaviour of the algorithm before the
deployment in the real environment. The scenario is the hallway and its map is loaded to
provide the information about the geography of the environment. The obstacles are in the
shape of 1m wide cubes and are located at a distance of approximately 3m from one another,
while the diameter of the robot is approximately 60cm. Figure 6.12 shows the scenario.

In the simulation the robot avoids the obstacles and travels successfully to its destination,
proving the correct implementation of the navigation stack. As Figure 6.13 shows, the robot
lingers on the marked spots while trying to pass the obstacles. This means that the naviga-
tion stack is not configured in an optimal way, as the robot travels too close to the obstacles
and needs to stop and adjust its trajectory.
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Figure 6.12: Slalom - Simulation of the hallway with a partially occluded corridor

Figure 6.13: Slalom - Navigation in the simulated hallway with a partially occluded corridor

It is however hard to pinpoint the precise root cause of this behaviour with this basic configu-
ration, where the information on the different layers of the costmap is not displayed. Setting
up a layered costmap, as described in Section 4.8.2, helps in this regard by allowing fine
tuning of individual layer parameter and a more informative graphical representation in rviz.
This information includes the size of the local map, useful to visualize the range in which the
device is able to detect and react to an obstacle in its path. The simulation is run once again
with this configuration.

Figure 6.14: Slalom - Planned (green) and actual (red) trajectory

Figure 6.14 shows that a trajectory is calculated to avoid the obstacle as it enters the range
of the LiDAR. The robot tries to steer in order to follow it but does not do so fast enough
and ultimately approaches the turn as it is already too close to the obstacle. This leads to a
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situation where the robot needs to slow down and engage in evasive actions in order to avoid
colliding with the obstacle. This means that by the time when the obstacle is perceived, the
robot is travelling too fast to react promptly. A straightforward solution to this is to limit the
maximum speed of the robot and to increase the distance where the obstacle is acknowl-
edged as such, according to the range of the LiDAR. After these adjustments, the navigation
improved as the device followed the planned trajectory without drastically correcting it, as
shown in Figure 6.15.

Figure 6.15: Slalom - Slow speed and increased detection range

It appears however that in a few occasions the robot cuts the corners when passing past
the obstacles. Although it does not compromise the success of the mission in this particular
scenario where the obstacles do not and can not move, it may be advisable to increase the
distance that the robot should try to keep from the obstacles to account for the ones that
may move, causing potential collisions. On the other hand, it is undesired to make the robot
stop where the space is limited and this distance can not be maintained, such in narrow
hallways.

This can be accomplished by inflating the obstacles to increase the cost of the trajectories
closer to them, in order to bias the local planner to choose one further from them. More
details are provided in Section 4.8. The result is shown in Figure 6.16, where the robot
keeps a sensibly larger distance of approximately 20cm to the obstacles and does not cut
the corners as much.

Figure 6.16: Slalom - Inflated obstacles

After having refined the configuration in the simulation environment, the experiment is then
executed in real life. The obstacles, represented by cardboard barriers, are placed first at a
distance of 2m. Figure 6.17 shows that the robot drives through the track without interrup-
tions.
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The distance between the obstacles is then incrementally decreased to 80cm where the
robot has a set diameter of 60cm, providing a passage of 20cm at best, barely sufficient for it
to drive through. The latter initiates the navigation and successfully proceeds while avoiding
the obstacles, proving that the system can be configured to navigate in spaces 20cm larger
than the diameter of the robot, as shown in Figure 6.18.

Figure 6.17: Slalom - Real scenario with obstacles at 2m distance

Figure 6.18: Slalom - Real scenario with obstacles at 80cm distance

6.2.2 Dynamic obstacle persistence

During the tests, it appeared that some odd behaviour manifested when an obstacle passed
briefly through the field of view of the LiDAR, causing the robot to abruptly stop and engage
in steering manoeuvres or abort the mission, even though the path had been cleared in the
meantime. In this experiment, meant to investigate the issue, an obstacle is put in front of
the laser scanner and removed shortly afterwards, while the navigation stack is started to
enable the object detection feature and monitor its response on rviz. A camera is located
in front of the LIDAR and records the scene, as shown in Figure 6.19. As the obstacle is
lifted, the navigation algorithm does not clear it from the map and the obstruction persists,
as Figure 6.20 shows. In the figures, the dark blue dots represent the actual readings from
the laser, while the purple ones represent the space that the robot assumes is occupied by
an obstacle.

This exposed a flaw in the configuration. The underlying problem is that, in order to clear
an obstacle from the map, the algorithm must receive a laser reading that returns a range
greater than the maximum detection range and less then the maximum range of the LiDAR.
Furthermore, this must not exceed a set raytracing threshold parameter. What happens in
practice is that some laser scanners return a range of zero or NaN when no object is detected
within their range, as is the case with the SICK TiM LiDAR used in this project, effectively
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Figure 6.19: Obstacle persistence - Obstacle in front of sensor

Figure 6.20: Obstacle persistence - No obstacle in front of sensor

hindering this obstacle clearing feature. To fix this problem, a laser scan range filter must be
implemented, that converts the readings with a range of zero and NaN to a value sensibly
lower than the raytracing threshold parameter and higher than the obstacle detection range,
in order not to cause any false detections. When the test is then repeated, the obstacle is
cleared as soon as it is not in the field of view of the LiDAR, as expected.
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6.2.3 Dead-end

In the following test, the obstacles are completely obstructing the direct itinerary to the goal,
effectively creating a dead-end, as shown in the simulated scenario in Figure 6.21. Due to
the limited range of the simulated Sick TiM LIDAR, the robot is not aware of the obstruction
and should recalculate its trajectory as soon as the obstacles are sensed, choosing to travel
around through the connecting corridors instead.

The simulation proceeds as expected, as the robot reaches the occlusion, performs a U-turn
and proceeds through the other corridor, eventually reaching its goal, as Figure 6.22 shows.
The experiment was repeated in real life by leaving the door on the corridor closed and
keeping the other ones open. The robot reaches the occlusion and recalculate its trajectory
as expected.

Figure 6.21: Dead-end - Simulation setup with one path occluded

Figure 6.22: Dead-end - Simulation result with one path occluded

In the next test both the possible itineraries are occluded, preventing the robot from complet-
ing its mission, as shown in Figure 6.23. The purpose of this is to assess how the algorithm
reacts when such a situation occurs. The test is successfully carried out in the simulation en-
vironment, as Figure 6.24 shows, where the robot reaches the second occlusion and aborts
the mission, since no possible path to reach the destination is viable.
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Figure 6.23: Dead-end - Simulation setup with both paths occluded

Figure 6.24: Dead-end - Simulation result with both paths occluded

6.2.4 Target

In this experiment, the robot is commanded to reach a precise destination, corresponding to
a target located on the ground and rotate 180° in place. The aim is to evaluate the navigation
accuracy in terms of offset from the desired target that the robot displays under different
conditions. This accuracy may be significant in tasks involving high precision positioning. A
remarkable application would be a device able to autonomously drive to an inductive charging
station and position itself over the coil as its batteries reach a set minimum level.

The distances are measured as shown in Figure 6.25 and the measurements are displayed
in Figure 6.26, where the red crosses represent the points where the robot located itself
with respect to the center of the target. The center of the robot is defined in its models to
be precisely in between the left and right wheels and when it lands outside the perimeter,
defined as a circle with a 30cm radius, the test is considered failed.

First the target is located in the proximity of one end of the corridor and the robot starts
from the other end. The robot must travel a distance of approximately 55m to reach its goal,
located 3 meters from the wall at the end of the corridor. This is inside the range of the
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Figure 6.25: Target - Measurement mode

LiDAR of 4m and it should provide the navigation algorithm, which relies on both odometry
and laser scan data, with a useful reference to correctly position the robot.

While the accuracy is overall satisfactory and in each test the robot positioned itself well
within the target radius of 30cm, the results in Table 6.2 under the label "Long distance"
show a consistent error in the x- and y-axix, with an average distance of 122mm from the
center of the target and a standard deviation from the mean of 26mm, and a minor rotational
delta of -0.9°. The assumption is that this may be due to the long distance travelled, through-
out which the relatively small error in the odometry remaining after calibration increases
incrementally.

Having a closer look at the recording of the experiment, it appears that the reported distance
of the robot from the goal is considerably less than it really is. This seems to corroborate
the previous assumption, as an error in the odometry could cause the robot to perceive its
position incorrectly. To prove whether this is indeed the case, in the next test the robot starts
from 16m from the target. The results, under the label "Short distance" in Table 6.2, show
that the error is marginally reduced by 25% to a mean distance of 91mm from the center.
It seems therefore that the remaining odometry error has an impact on how close the robot
position itself to the center of the target.

The algorithm documentation revealed that the goal distance tolerance can be adjusted. The
previous test is run once again with a tolerance reduced from the default value of 100mm
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by a factor of 5 to 20mm. As shown in Table 6.2 under the label "Reduced goal tolerance",
the error is reduced by a factor of approximately 2 to a mean distance of 40mm with a stan-
dard deviation of 14mm, not entirely matching the expectations of a mean value of less than
20mm. On the other hand, in order to reduce its distance, the robot engage in multiple rota-
tion on the spots, gradually adjusting its position. By further decreasing the goal tolerance,
the robot keeps adjusting in a seemingly endless loop, never reaching its destination.

Next the target was moved away from the front wall, to evaluate whether the lack of range
information from this reference has any influence on the accuracy. The results in Table 6.2
under the label "No wall reference" show that this is not the case, as the mean distance of
36mm is just marginally reduced from the previous case with the reference wall in the range
of the LiDAR, meaning that the navigation algorithm does not seem to rely significantly on
the laser reading for localization purposes as much as it does on the odometry.

The main findings of this test can be summarized as follows:

e The localization process relies mostly on odometry data to estimate the pose of the
root.

e This implies that the accuracy of the initial robot pose estimate has a direct impact on
the outcome precision.

e The lack of references in the range of the laser scanner does not affect the accuracy
remarkably.

e The goal tolerance can be lowered down to a set threshold at the expense of adjust-
ment time and manoeuvres.

It is however not investigated how different settings would influence the outcomes. This test
was performed with the AMCL localization algorithm with default settings and in a scenario
characterized by the lack of unique features and landmarks, and a slight change in the setup
could lead to a very different sets of results altogether. The AMCL algorithm for example
could be configured to rely more on the laser scan readings than on the odometry data. The
results outlined in Table 6.2 above however should give a broad impression on the degree of
accuracy which is possible to achieve.
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Long distance Short distance

N | Ax'mm Ay/mm A/ d/mm | Axmm Ay/mm Ap/° d/mm
1 20 -88 -1 90 -18 -48 -3 51
2 20 -133 2 134 -23 -74 0 77
3 -33 -150 -3 154 -2 -70 1 70
4 -46 -85 -3 97 -19 -93 0 95
5 -65 -66 -2 93 -38 -21 -1 43
6 -31 -165 2 168 -36 -89 0 96
7 -74 -97 3 122 -29 -125 1 128
8 -32 -106 -3 111 -30 -111 -2 115
9 -34 -125 -3 130 -26 -144 -3 146
wp/°  uwd/mm  od/mm wp/°  uwd/mm  od/mm
-0.9 122 26 -0.8 91 33

Reduced goal tolerance No wall reference
N | Ax'mm Ay/mm A/ d/mm | Axmm Ay/mm Ap/° d/mm
1 -42 -29 -2 51 3 22 0 22
2 -28 -54 0 61 -13 10 1 16
3 2 -38 -1 38 -5 61 6 61
4 -16 -37 2 40 2 25 1 25
5 -9 -36 -2 37 -8 10 0 13
6 -1 -12 -5 12 -10 15 3 18
7 -47 -30 1 56 -11 -50 -1 51
8 22 -32 -2 39 1 -47 2 47
9 -26 -14 0 30 0 -70 -1 70
w/°  pud/mm  od/mm w/°  pud/mm od/mm
-1 40 14 1.2 36 20

Table 6.2: Target - Measurements

6.2.5 Elevated obstacles

The obstacles encountered up until this point were positioned on the ground with no section
overhanging from the sides that could constitute an obstruction to the robot. The charac-
teristic of a plausible scenario however is more complex, as there could be elevated objects
causing potential collisions which can not be detected using a two dimensional LiDAR scan-
ning the plane parallel to the ground. Among the possible approaches, a ToF (Time of Flight)
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Figure 6.26: Target - Measurements
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camera and a 3-D laser scanner sensor can provide range data with different resolutions
on the environment within a horizontal and vertical range, determined by the field of view
of the sensors and the number of laser beams emitted from the LiDAR. This range data is
structured in the ROS PointCloud format, described in Listing 4.2 in Section 4 and visualized
in Figure 6.27.
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Figure 6.27: Elevated obstacles - PointCloud visualization in rviz

In this experiment, two objects are on the ideal trajectory between the robot and its destina-
tion. The first is at a height of 25cm from the ground and effectively represent an obstacle,
as the height of the robot is approximately 60cm, while the second one stands at a height
of 70cm from the ground, leaving enough space for the robot to pass underneath it. The
2-D SICK TiM LiDAR located at a height of 10cm from the ground can not perceive these
obstacles, but the 3-D Velodyne VLP-16 laser scanner located on top of the chassis can.
By setting the parameters min_obstacle _height and max_obstacle_height in the navigation
stack configuration to respectively Ocm and 60cm, it is possible to define a range in between
which the detected objects are to be considered obstacles. During the successful test, the
planner correctly perceives the object with a height of 25cm as an obstacle and calculates a
trajectory around it and beneath the second object with a height of 70cm, to reach finally its
destination, as shown in Figure 6.28
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Figure 6.28: Elevated obstacles - Experiment

6.2.6 Labyrinth

In this experiment, the robot must reach a destination set in an unknown environment, repre-
sented by a maze. As the AMR advances through narrow corridors and tight corners and, as
it stumbles upon dead ends, performs U-turns with little space for manoeuvres, the trajectory
has to be planned meticulously. Moreover, the navigation algorithms should keep track of the
previous routes and avoid travelling the second time to the same dead end. This is meant to
test the soundness of different navigation algorithms as the robot travels through uncharted
territory.

In this experiment the focus lies on two specific local planners, namely the teb_local_planners
and the dwa_Jlocal_planner. More detail on these algorithms and on how they are integrated
in the navigation stack is provided in Section 4.8. In this experiment, the following situations
are relevant when evaluating the robustness of the local planners, as both directly influence
the success ratio of the test:

e Dead ends: the robot should travel safely out of the dead end.

e Corners: the robot should turn the corners in a wide arc, avoiding driving too close to
the edges and the walls.

The environment is first reproduced in the simulation environment. For this purpose, the
maze shown in Figure 6.29 is used as the blueprint. The respective model is created in
Gazebo and is shown in Figure 6.30.
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Figure 6.29: Labyrinth - Blueprint

By Jkwchui - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=15002205
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Figure 6.30: Labyrinth - Setup in the simulation
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First the dwa_local _planner algorithm is tested. Also known as Dynamic Window Approach,
this algorithm predicts the cost of a set of trajectories, based on the distance to obstacles, to
the end goal and to the global plan, each weighted by a adjustable bias factor, and choose
the least expensive one. The following behaviours are observed in the first runs:

e Dead ends: As the robot finds itself in a dead end, it often starts spinning in circles for a
considerable amount of time, struggling to plan the right trajectory. When it eventually
does and if the space allows it, it starts performing a U-turn, otherwise aborts the
mission.

e Turns: When it turns corners, the robot does so barely avoiding touching edges and
walls. This often results in situation where the robots stops centimetres short of walls
and aborts the mission, since it perceives obstacles too close to perform any move-
ment safely.

Two are the issues which appear to be causing the problem and prevent the robot from
reaching its goal. First, the dwa_local planner seems to favour shorter trajectories that cut
corners instead of those that go safely around obstacles. This seems also to be causing the
spinning behaviour, when the planner refuses to follow the correct path laid out by the global
planner that, going backwards, seems to lead the robot further from the goal. To improve
these behaviours, the biases need to be adjusted so that the trajectories are chosen with this
order of priorities:

1. Close to the global plan.
2. Far from obstacles.
3. Closer to the goal.

The other issue is that the algorithm does not seem to perform in-place rotation and needs
a minimum forward velocity in order to turn successfully. This is what causes the robot to
abort the mission, when no space is available to perform the desired manoeuvre. Especially
critical in this respect are U-turns. The partial solution in this case is to lower the minimum
forward velocity that the robot is allowed to travel while turning. This shows however a criti-
cal shortcoming in the dwa_local_planner while navigating narrow spaces since it does not
exploit the differential drive system of the robot, as the turning radius can be reduced but not
zeroed.

After the adjustments above, the test is repeated multiple times and the robot eventually
succeeds in reaching its goal as shown in Figure 6.31, with a success ratio of approximately
30% on average. Ultimately the ease at which the dwa_local planner aborts the mission
suggests that, as long as these issues are not resolved, this local planner might not be a
sound choice in a robust AMR that needs to navigate narrow spaces.
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Next, the test is repeated using the feb_local planner, or Timed Elastic Band approach.
According to the authors of the algorithm, this is a trajectory planner especially designed
for differential and car-like robots (Ackermann steering) with limited turning radius, allowing
for in-place rotations and manoeuvres while in reverse gear. The algorithms is thoroughly
explained in the reference listed. [28] As a starting point, the default configuration is imple-
mented and adjusted to match the basic robot parameters. In the resulting solution shown in
Figure 6.32, the following behaviours are observed:

e Dead ends: As the robot perceives the dead end and a new trajectory is promptly
recalculated, the robot safely executes a U-turn, by reversing the speed while steering
to accelerate the manoeuvre. It does so accounting for the obstacles that may be
laying behind it, avoiding collisions.

e Turns: When approaching the corners, the robot tends to keep a safe distance from
the edge, but does so in an un-optimal way, stopping abruptly and performing small
adjustments, before resuming driving.

A similar labyrinth was realized in the real environment, where the walls consisted of thick
paper stretched between bottles representing the edges. In this way, it was possible to adjust
the layout with ease. Figure 6.33 shows the setup, overlaid with start and end position and
the solution of the labyrinth. It is worth noting that just before the end goal, the path presents
a bottleneck where the legs of the table leave a space of approximately 60cm, barely enough
for the robot to travel through.

First, the dwa_local_planner configuration that was successful in the simulation was imple-
mented in the real environment. The performance proved however to be drastically different
from the one experienced in the simulation, as the robot could not perform U-turns and was
not nearly able to solve the maze. The issue could theoretically be addressed by carefully
adjusting the settings of the planner to suit this specific scenario. In the opinion of the author
however this particular algorithm is not suitable to navigate in narrow passages that may end
in dead ends.

The teb_local planner tested in the simulation was then used in the real environment. In the
successful attempt shown in Figure 6.34, the circles represent the locations where the robot
briefly stops to correct its trajectory when instead it should have been possible to continue
in an uninterrupted movement. The motion of the robot seemed also to present some jitter.
The main cause is that the frequency of 2Hz at which the algorithm is executed and at the
which it sends the velocity commands to the base is not high enough.

Increasing this rate without lowering the trajectory optimization effort is however counter-
productive, as the computational burden quickly exceeds the capacity of the system, leading
to miscalculations and a delay in the response of the robot. On the other hand, excessively
lowering the optimization decreases the chances of a feasible and efficient trajectory being
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Figure 6.31: Labyrinth - DWA solution to the labyrinth
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Figure 6.32: Labyrinth - TEB solution to the labyrinth

computed. The settings need to be balanced accurately, repeating the experiment multi-
ple times until the performance is considered to be consistently satisfactory and the official
package documentation describes how to best configure these settings. [29] Notably, it was
observed that increasing the rate to 10Hz and decreasing the following parameters positively

affected the response of the system:

e max_number_classes: Controls how many alternative trajectories are computed.

e no_outer_iterations and no_inner _iterations: Sets the number of times the trajectory
computation and optimization loop iterations respectively are performed.
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Figure 6.33: Labyrinth - Setup in the real environment

Figure 6.34 shows the result, where the number of corrections reduced drastically. The
overall trajectory appears to be more efficient, as the turns are performed in a narrower
trajectory.

To objectively evaluate the configuration, the following parameters are considered:

e Success ratio: How many times out of 10 tries the robot successfully solved the
labyrinth.

e Time elapsed: The time in which the robot was successful.

e Distance travelled: The distance that the robot travelled from start to end, when suc-
cessful.

The result shown in Table 6.3 indicates that in 20% of the cases the robot travelled suc-
cessfully up until the bottleneck where the planner could not find a viable trajectory. This is
despite the fact that the radius of the robot is set to 25cm, providing a theoretical 10cm large
pathway to the objective. The root cause appears to be related to an unacceptably high cost
of the trajectory that may travel too close to the obstacles and could perhaps be alleviated
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Figure 6.34: Labyrinth - teb_local_planner solution to the real labyrinth with standard (left)
and with adjusted (right) settings

by further reducing the obstacle inflation radius and adjusting the biases of the planner to
attribute a lower weight to the obstacle distance factor.

In another 20% of the tests, the robot stopped and aborted the mission as it encountered a
dead-end and the planner failed to find an alternative path. The cause of this problem is not
clear, however the issue seems to occur consistently when the goal lies within the boundaries
of the local costmap highlighted in Figure 6.35.

The distances to the goal travelled in the successful 60% of the trials are in the range of 20m
to 24m and the differences are due to different paths being chosen and small trajectories
adjustments. Interesting however is that the time needed to complete the maze is on average
92s but ranges from 70s to 116s. This is due to an oscillatory behaviour of the planner that
keeps switching between different possible trajectories, effectively stalling the robot as shown
in Figure 6.35, where the trajectories that have been planned in a time of a few seconds are
overlaid and shown in green. Eventually, an oscillation recovery behaviour is triggered and
the robot chooses one, resuming its path. This is a known issue of the teb_local planner
and is also outlined in the official documentation.

In the previous experiments, the algorithms settings have been tuned in order to achieve
a success ratio of 60%. It may very well be possible to achieve better results and even
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overcome the critical issues outlined above by adjust some additional parameters. While
the focus of this test was to evaluate the performance of the algorithms to determine their
fundamental behaviour, the reader is encouraged to test new settings configurations.

teb_local_planner maze statistics

N | Distance/m Time/s | Note

1 - - | Bottleneck reached

2 20.1 82.5

3 23.0 1125

4 - - | Bottleneck reached

5 20.2 73.0

6 21.5 116.0

7 240 1145

8 - - | Bottleneck reached

9 21.0 96.0

10 - - | Lost

11 - - | Bottleneck reached

12 20.6 88.5

13 - - | Lost

14 - - | Lost

15 20.5 81.0

16 20.0 90.0

17 20.5 87.5

18 19.7 70.0

19 - - | Lost

20 21.0 92.0
w/m u/s % to bottleneck % success
21 92 80 60

Table 6.3: Labyrinth - Measurements
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Figure 6.35: Labyrinth - teb_local_planner can not find a trajectory (left)

and oscillates between two possible trajectories (right)

6.2.7 Summary

The observations from the previous experiments can be summed up in the following find-

ings:

e While navigating in a location clustered with unmapped obstacles, the main challenge

is to configure the navigation algorithms to perform in narrow spaces by lowering the
maximum allowed speed and minimizing the minimum allowed distance to the obsta-
cles.

If the distance the robot needs to cover is significant and the obstacles are expected to
be typically far apart from one another, it might be preferable to increase the maximum
allowed speed, the minimum allowed distance to the obstacles, to make it safely go
around them, and the obstacle detection range, to avoid rushed avoidance manoeu-
vres.

The robot can reach an objective with an error measurable in less than ten centimeters
from the set destination with reliable odometry information available, however exces-
sively reducing the goal distance tolerance may lead to a situation where the robot
keeps adjusting its position without ever reaching the goal.

Laser scan data can be integrated in the localization process to compensate for cu-
mulative odometry error, however its positive effect is limited in an environment lacking
reference landmarks.
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e The choice of the local planner for trajectory calculation should be carefully weighed
based on the task since it has an impact on the feasibility of certain manoeuvres.

e Specifically, while the Dynamic Window Approach planner does not contemplate ma-
noeuvres in reverse and struggles to drive the robot out of narrow dead-ends, the
Timed Elastic Band planner is capable of doing so.

6.2.8 Open issues
Automatic pose recovery

In order to purposely navigate in the environment when a static map is used, the navigation
algorithm move_base relies on a fairly accurate initial pose estimate. Without it, the robot
may not be able to locate itself in the map or, if the initial pose is given but is not accurate,
it may try to reach its set destination but will likely stop a considerable distance short from
it. Setting the initial pose manually at the start of the operation can be a tedious process,
especially in case the navigation starts from a point where no reference landmarks can be
found nearby. Moreover, it may happen that, during prolonged navigation, the cumulative
error from the odometry data might fool the robot into mistakenly estimating its position in
the map. If the platform is to be deployed in a real-life scenario, it is unrealistic to assume
someone would be able to adjust the position of the robot each time it loses track of its po-
sition. It is therefore a crucial issue to implement a pose recovery routine that is engaged
whenever this situation happens. Judging from the experiments described in this paper, a
2-D LiDAR with limited range does not provide sufficient information to implement this fea-
ture. One possible solution would be to command the robot to start looking for a landmark
which location is known and from where its position can be estimated. One option would be
deploying radio beacons in the operations scenario, which the robot can sense and locate.
Alternatively, a high resolution camera could spot QR codes or unique landmarks using Com-
puter Vision features extraction algorithms. These algorithms have been proven effective to
tackle this issue using several point cloud sensing devices such as 3-D LiDAR sensors or
RGB-D cameras, as explained more in-depth in the listed resource. [30]

Autonomous mapping

As mentioned, to be able to determine a right trajectory that goes around static obstacles
rather than blindly though them, the navigation stack needs to know the geography of the
environment it is set to navigate in. This information is provided by the static map and sec-
tion 4.7 explains how to produce one, either by adapting an available map or by sampling
the environment while driving the robot in it and using a SLAM algorithm to process the data.
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Both methods are performed manually and this can quickly become tedious, as this has to
be repeated for each scenario where the robot is going to be deployed in. A semi-automatic
approach is to implement an algorithm that command the robot to explore while avoiding
obstacles and sampling the environment at the same time just in order to create a map. An-
other approach that combines mapping and navigation in a one step solution could be to let
the robot increasingly build the map as it navigates towards specific destinations. In the very
first run, the geography of the environment is completely unknown and the robot may take
different wrong turns before finally reaching its goal, but as the number of runs or missions
increases, the device keeps learning as it explores new parts of the maps, until eventually
the whole map is completely known.



7 Conclusion and future developments

In this paper two fundamental tasks have been identified as requirements, which an Au-
tonomous Mobile Robot should be able to perform, namely mapping and navigating au-
tonomously an environment. Specifically, to efficiently and safely reach a set destination, an
accurate map of the static obstacles should be available and the most adequate trajectories
should be calculated, which promptly account for dynamic obstacles and overcome challeng-
ing sections in the planned path. These tasks represent the foundations upon which more
advanced features may subsequently be implemented. In order to achieve the requirements,
five milestones have been identified and reached.

The development environment was configured using ROS as the software framework of
choice which, compared to other alternatives, proved to be the most suitable to robustly
implement both the tasks mentioned above with relative ease. Particularly, the SLAM algo-
rithms and navigation stack integrated in the framework have the characteristics to effectively
perform mapping and navigation. Additionally, the framework can operate on multiple remote
devices, including Android devices.

The sensors were integrated as intended in both a real and simulated environment. The
Pioneer P3-DX was identified as a suitable robot platform for the purpose, as its integrated
rotary encoders are able to provide reliable odometry information when the relative parame-
ters are correctly calibrated. Moreover, the layout of its chassis allows to comfortably place
a variety of sensors. In particular, a SICK TiM310 S01 2-D LiDAR placed in front can suc-
cessfully map and navigate the environment, detecting obstacles at the exact height of the
laser beam, while a better option is to place a 3-D LiDAR, like the Velodyne VLP-16, in an
elevated position with respect to the base of the robot, in order to detect obstacles on a 360°
horizontal radius and located at different heights.

An Android device was successfully used as remote controller by means of a virtual joystick
application. This was used to manually drive the robot to explore the environment while
recording the sensor output, to create maps from consistent data.

Mapping was achieved with the gmapping SLAM algorithm, which relies on both laser range
and odometry data. After calibrating the odometry and adjusting the algorithms settings, the
resulting 2-D map was accurate, with correct dimensions and geometry.
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Autonomous navigation was implemented with the Timed Elastic Band approach. The robot
was able to navigate an unknown environment characterized by narrow spaces and corners
and dead ends, finally reaching its destination without colliding with obstacles located at
different heights along its way.

Overall, the system successfully performed a variety of tests related to mapping and au-
tonomous navigation and can thus be considered a robust research platform, one that can
be further enhanced by integrating new sensors, like camera or microphones for video and
audio related tasks, and manipulators. New applications can as well be developed and in-
stalled on a remote device to have more advanced and customizable interactions with the
robot.



Appendices
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This Bachelor Thesis contains an appendix of the following contents on a CD. This Appendix
is deposited with Prof. Dr. Pareigis.

Appendix A: ROS packages

e p3dx_gazebo: configuration, models and launch files to operate the robot in the simu-
lation environment

e p3dx_real: configuration and launch files to operate the robot in the real environment
e amr-ros-config: models of the real Pioneer 3-DX robot; developed by third parties [9]
e rosaria: driver to operate the Pioneer 3-DX robot; developed by third parties [12]

e sick_tim: drivers and models of SICK TiM laser scanners; developed by third parties
[13]

e velodyne: drivers and models of Velodyne laser scanners; developed by third parties
[31]

Appendix B: bag files
e exploration.bag: recording of the exploration mission described in Section 6.1

e |abyrinth.bag: recording of the labyrinth experiment described in Section 6.2.6
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